

Strong Approximation for an Overflow Queueing Network

Karima Adel-Aissanou Research Unit LaMOS
Faculty of Exact Sciences, Université de Bejaia Bejaia 06000
Algeria
ak_adel@yahoo.fr

Karim Abbas
Research Unit LaMOS
Faculty of Exact Sciences,
Université de Bejaia
Bejaia 06000
Algeria
karabbas2003@yahoo.fr

Djamil Aissani
Research Unit LaMOS
Faculty of Exact Sciences, Université de Bejaia
Bejaia 06000
Algeria
lamos_bejaia@hotmail.co

Abstract: Queueing network models are among the most natural for quantitative analysis. However most models have no product form solutions for the steady state distribution. Besides, when we compute the solutions for infinite state space of this kind of models, the state-space has to be truncated, in some way, into a finite one. Many truncation techniques are used in the order to approximate the steady state distribution of the infinite state space of these models by that of the truncated one. In this paper, we show numerically comparing some obtained strong stability perturbation bounds that the augmentation of the first column provides the best truncation technique to approximate the steady state distribution of an overflow model.

Key-Words: Queueing, State-space truncation, Overflow model, Approximation, Algorithm

MORTIE Al'LAMITC' VMIVERSITY VIVIOM

Editors

Nikos E. Mastorakis

Adam Ding
Marina V. Shitikova

造

ADVANCES in MATHEMATICS and STATISTICAL SCIENCES

Proceedings of the 3rd International Conference on Mathematical, Computational and Statistical Sciences (MCSS '15)

Dubai, United Arab Emirates
February 22-24, 2015

Scientific Sponsor

University of Naples Federico II, Italy

ADVANCES in MATHEMATICS and STATISTICAL SCIENCES

Proceedings of the 3rd International Conference on Mathematical, Computational and Statistical Sciences (MCSS '15)

Dubai, United Arab Emirates
February 22-24, 2015

Published by WSEAS Press
www.wseas.org

Copyright © 2015, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by no less that two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive.

Strong Approximation for an Overflow Queueing Network

Karima Adel-Aissanou
Research Unit LaMOS
Faculty of Exact Sciences,
Université de Bejaia
Bejaia 06000
Algeria
ak_adel@yahoo.fr

Karim Abbas
Research Unit LaMOS
Faculty of Exact Sciences, Université de Bejaia
Bejaia 06000
Algeria
karabbas2003@yahoo.fr

Djamil Aissani
Research Unit LaMOS
Faculty of Exact Sciences,
Université de Bejaia
Bejaia 06000
Algeria
lamos_bejaia@hotmail.co

Abstract

Queueing network models are among the most natural for quantitative analysis. However most models have no product form solutions for the steady state distribution. Besides, when we compute the solutions for infinite state space of this kind of models, the state-space has to be truncated, in some way, into a finite one. Many truncation techniques are used in the order to approximate the steady state distribution of the infinite state space of these models by that of the truncated one. In this paper, we show numerically comparing some obtained strong stability perturbation bounds that the augmentation of the first column provides the best truncation technique to approximate the steady state distribution of an overflow model.

Key-Words: Queueing, State-space truncation, Overflow model, Approximation, Algorithm

1 Introduction

Queueing network models are among the most natural for quantitative analysis, capacity planning and buffer dimensioning of logistics, manufacturing and communication systems. In order to control and optimize a queueing network, everyone has to know its characteristics like the overall blocking or overflow probability, the average departure rate from the waiting room and the servers and the average occupation proportion of the waiting and service positions or others of special interest. However, these characteristics can only be calculated for a limited class of queueing networks and the more involved the system dynamics get, the more involved the analysis of the long run behavior usually becomes.

In this paper, we consider a general class of so called overflow queueing networks. These networks consist of two queues, where the capacity of the first queue is always finite. Customers arriving at the first queue have an overflow capability from the first to the second queue if the first queue operates at a certain fixed capacity, i.e., under certain conditions, demands arriving at the first queue are allowed to join the second queue. Due to the natural occurrence of overflow queueing problems, the related literature is vast, see for example Disney and König [4] for a broad overview. Overflow queueing models are widespread in lit-
erature. Van Doorn [24] and Parthasarathy and Sudhesh [17] study the interoverflow time distribution of a finite birth and death queue model. Koury et al. [13] and Krieger et al. [14] give reviews of iterative numerical methods for overflow queueing models. A brief discussion of numerical methods for some two-queue overflow systems and further references are given in Ching and Ng [2]. While most of these formulations are of primary interest when the focus is on numerical results. Related overflow models are studied in van Doorn [24] and Guérin, Lien [6] and the referenced literature therein using a variety of different techniques.

Despite of a growing literature on the performance analysis of this type of models, there is still no viable analytical method for predicting performances of such networks. In this paper, we propose to follow a different train of thought, and will present a directly computable perturbation bounds on the effect on the stationary behavior for state-space truncation of infinite discrete time Markov chain describing an overflow model. These perturbation bounds are obtained by using the strong stability method [12] for different truncation techniques. Indeed, we are interested in approximating stationary distributions of an infinite discrete time Markov chain describing the state of an overflow model by those corresponding of the same model after the truncation state-space
of this Markov chain. More precisely, let P be the one-step transition probability matrix of the considering overflow model (with infinite waiting room), and let ${ }_{(Q)} P$ be the northwest corner of P. Notice that ${ }_{(Q)} P$ is not a stochastic matrix. The procedure to make ${ }_{(Q)} P$ stochastic by adding appropriate values to its entries is called augmentation. In this paper, we are interested in determining which augmentation technique provides the best approximation in the sense that the analytic perturbation bounds derived by using the strong stability method is the minimum. This is made by numerical comparison of three different augmentation techniques. Our main contributions here are:

1. to approximate the stationary distributions of an overflow model with infinite waiting room, which has not a product form solution, by those corresponding of the same model after the truncation of its number waiting room by using the strong stability method, and
2. to show numerically comparing the obtained strong stability bounds the best augmentation technique.

This paper comprises four sections. In Section 2, we present basic definitions and tools for computing the strong stability perturbation bounds. In Section ??, we describe the overflow network model in which the buffer size of second service station is truncated and we give the perturbation bounds corresponding to this truncation. A comparison between the obtained perturbation bounds is illustrated through numerical examples in Section 4. Eventually, we will point out directions of further research.

2 Strong Stability Approach

The main tool for our analysis is the weighted supremum norm, also called v-norm, denoted by $\|\cdot\|_{v}$, where v is some vector with elements $v(k, l)>1$ for all $(k, l) \in \mathbf{S}=\{0,1\} \times\{0, \ldots, Q\}$.

Let us note $\mathfrak{B}(\mathbb{N})$, the Borel field of the natural numbers that is equipped with the discrete topology, and we consider the measurable space $(\mathbb{N}, \mathfrak{B}(\mathbb{N}))$.

Let $\mathfrak{M}=\left\{\mu_{(i, j)}\right\}$ be the space of finite measures on $\mathfrak{B}(\mathbb{N})$ and $\eta=\{f(i, j)\}$ be the space of bounded measurable functions. We associate with
each transition operator P the linear mappings

$$
\begin{align*}
(\mu P)_{(k, l)} & =\sum_{i=0}^{1} \sum_{j=0}^{Q} \mu_{(i, j)} P_{(i, j) ;(k, l)} \tag{1}\\
(P f)(k, l) & =\sum_{i=0}^{1} \sum_{j=0}^{Q} f(i, j) P_{(k, l) ;(i, j)} . \tag{2}
\end{align*}
$$

Introduce to \mathfrak{M} the class of norms of the form

$$
\begin{equation*}
\|\mu\|_{v}=\sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|\mu_{(i, j)}\right|, \tag{3}
\end{equation*}
$$

where v is an arbitrary measurable function (not necessary finite) bounded from below by a positive constant. This norm induces in the space η the norm
$\|f\|_{v}=\sup _{k} \sup _{l} \frac{|f(k, l)|}{v(k, l)} ; k, l \in\{0,1\} \times\{0, \ldots, Q\}$.
Let us consider \mathfrak{B}, the space of bounded linear operators on the space $\left\{\mu \in \mathfrak{M}:\|\mu\|_{v}<\infty\right\}$, with norm

$$
\left\{\begin{array}{l}
\|Q\|_{v}=\sup _{k} \sup _{l} \frac{1}{v(k, l)} \sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|Q_{(k, l) ;(i, j)}\right| \tag{5}\\
\quad k, l \in\{0,1\} \times\{0, \ldots, Q\} .
\end{array}\right.
$$

Let ν and μ be two invariant measures and suppose that these measures have finite v-norm. Then

$$
\left\{\begin{array}{l}
|\nu f-\mu f| \leq\|\nu-\mu\|_{v}\|f\|_{v} \inf _{k} \inf _{l} v(k, l) ; \tag{6}\\
\quad k, l \in\{0,1\} \times\{0, \ldots, Q\} .
\end{array}\right.
$$

for all f with $\|f\|_{v}$ finite.
For our analysis, we will assume that $v(k, l)$ is of a particular form $v(k, l)=\alpha^{k} \beta^{l}$, for $\alpha>1$ and $\beta>1$, which implies

$$
\begin{equation*}
\inf _{k} \inf _{l} v(k, l)=1 ; k, l \in\{0,1\} \times\{0, \ldots, Q\} . \tag{7}
\end{equation*}
$$

Hence, the bound 6 becomes

$$
\left\{\begin{array}{l}
|\nu f-\mu f| \leq\|\nu-\mu\|_{v} \sup _{k} \sup _{l} \frac{\mid f(k, l)}{v(k, l)} ; \tag{8}\\
\quad k, l \in\{0,1\} \times\{0, \ldots, Q\}
\end{array}\right.
$$

We say that the Markov chain X with transition kernel P verifying $\|P\|_{v}<\infty$ and invariant measure π is strongly v-stable, if every stochastic transition kernel \widetilde{P} in some neighborhood $\{\widetilde{P}$: $\left.\|\widetilde{P}-P\|_{v}<\epsilon\right\}$ admits a unique invariant measure
$\widetilde{\pi}$ such that $\|\widetilde{\pi}-\pi\|_{v}$ tends to zero as $\|\widetilde{P}-P\|_{v}$ tends to zero uniformly in this neighborhood. The key criterion of strong stability of a Markov chain X is the existence of a deficient version of P defined in the following:

Let X be a Markov chain with the transition kernel P and invariant measure π. We call a deficient Markov kernel T a residual for P with respect to $\|\cdot\|_{v}$ if there exists a probability measure σ and a nonnegative measurable function h on \mathbf{S} satisfying the following conditions:
(a) $\pi h>0, \sigma \mathbf{1}=1, \sigma h>0$, and
(b) the kernel $T=P-h \circ \sigma$ is nonnegative,
(c) the v-norm of the kernel T is strictly less than one, i.e., $\|T\|_{v}<1$,
(d) $\|P\|_{v}<\infty$,
where \circ denotes the convolution between a measure and a function and $\mathbf{1}$ is the vector having all the components equal to 1 .

It has been shown in [1] that a Markov chain X with the transition kernel P is strongly stable with respect to v if and only if a residual for P with respect to v exists. Although the strong stability approach originates from stability theory of Markov chains, the techniques developed for the strong stability approach allow to establish numerical algorithms for bounding $\|\pi \tilde{\pi}-\pi\|_{v}$. A bound on $\|\widetilde{\pi}-\pi\|_{v}$ is established in the following theorem.

Theorem 1. ([11]) Let P be strongly stable. If

$$
\|\widetilde{P}-P\|_{v}<\frac{1-\|T\|_{v}}{\|I-\Pi\|_{v}}
$$

then, the following bound holds

$$
\|\widetilde{\pi}-\pi\|_{v} \leq\|\pi\|_{v} \frac{\|I-\Pi\|_{v}\|\widetilde{P}-P\|_{v}}{1-\|T\|_{v}-\|I-\Pi\|_{v}\|\widetilde{P}-P\|_{v}}
$$

where Π is the stationary projector of P and I is the identity matrix.

Note that the term $\|I-\Pi\|_{v}$ in the bound provided in Theorem 1 can be bounded by

$$
\|I-\Pi\|_{v} \leq 1+\|\mathbf{1}\|_{v}\|\pi\|_{v}
$$

In this case, we can also bound $\|\pi\|_{v}$ by

$$
\begin{equation*}
\frac{(\sigma v)(\pi h)}{1-\rho} \tag{9}
\end{equation*}
$$

3 Analysis of the Model

3.1 Model description

Consider an overflow queueing network that consists of two queues in parallel, Q_{1} and Q_{2}, where the first queue Q_{1} has not a waiting rooms, that is, the capacity of the waiting room in first queue is 0 , and the second queue Q_{2} has an infinite capacity queue with First-Come, First-Served (FCFS) service discipline. Customers arriving at the first station have an overflow capability from the first to the second queue if the first server is not available, i.e., under certain conditions, demands arriving at the first service station are allowed to join the second queue. In every model, the dynamic of the first queue is or is at least similar to the famous Erlang loss systems. The services in the both stations are assumed to be exponential with parameters μ_{1} and μ_{2}, respectively. The customers arrive according to a Poisson process with parameter λ. We assume that $\lambda<\mu_{2}$.

This model has no product form solution for the steady-state joint queue size distribution [9]. Furthermore, the same model can be represented as quasi birth and death processes, see for example Latouche and Ramaswami [15]. Consequently, their analysis can be carried out using a matrix-geometric approach, see Neuts [16]. Overflow queueing models are widespread in literature. Van Doorn [24] and Parthasarathy and Sudhesh [17] study the interoverflow time distribution of a finite birth and death queue model. Koury et al. [13] and Krieger et al. [14] give reviews of iterative numerical methods for overflow queueing models. A brief discussion of numerical methods for some two-queue overflow systems and further references are given in Ching and Ng [2]. van Doorn [24] and Guérin, Lien [6] and the referenced literature therein using a variety of different techniques. The overflow stream is known to be hyperexponential [24], so that the overflow station separately can be analyzed as a GI/M/s queueing system. This, however, would still require complex computational procedures for large s values [3]. Moreover, we can be interested in a performance measure that depends on both queue sizes, such as the total number of customers present, where $\mu_{1} \neq \mu_{2}$ is allowed. van Dijk [22] establishes an explicit error bounds on state-space truncation of an overflow model. While most of these formulations are of primary interest when the focus is on numerical results, the strong stability method [12] used in the following gives a new perturbation bounds with exactly comput-
ing of the constants. This approach gives with precision the error, on the queue size stationary distribution of the considered overflow model, due to the state-space truncation.

Let (i, j) denote the number of customers at Q_{1} and Q_{2}, respectively. $M=\left(\lambda+\mu_{1}+\mu_{2}\right)$. Consider the discrete time Markov chain with one-step transition probabilities $\left(P_{(i, j) ;(m, n)}\right)$ for a transition from a state (i, j) to a state (m, n) given by:

$$
\left\{\begin{array}{l}
\widetilde{P}_{(0, j) ;(1, j)}=\lambda / M \tag{10}\\
\widetilde{P}_{(1, j) ;(, j+1)}=\lambda / M \\
\widetilde{P}_{(1, j) ;(0, j)}=\mu_{1} / M \\
\widetilde{P}_{(i, j) ;(i, j-1)}=\mu_{2} / M \\
\widetilde{P}_{(0, j) ;(0, j)}=\mu_{1} / M \\
\widetilde{P}_{(i, 0) ;(i, 0)}=\mu_{2} / M
\end{array}\right.
$$

In the following we use the strong stability method to approximate the stationary distributions of an overflow model with infinite waiting room by those corresponding of the same model after the truncation of its number waiting room. This is given by considering three different types of truncation technique, and we are interested in determining which type of truncation technique provides the best approximation in the sense that the strong stability bound value is the minimum.

3.2 State-Space Truncation in the Overflow Model

In this section, for approximating the stationary distribution of an infinite Markov chain, we will establish three perturbation bounds by using the strong stability method. For that, let P be the transition probability matrix of an infinite discrete time Markov chain, describing the overflow model considered in our analysis, which has a unique stationary distribution π, and let ${ }_{(Q)} P$ be the northwest corner of P. Notice that ${ }_{(Q)} P$ is not a stochastic matrix. The procedure to render ${ }_{(Q)} P$ stochastic by adding appropriate values to its components is called augmentation. Seneta [20] summarizes much of the literature on this. In our analysis, we will consider three different types of truncation technique: augmentation of the first column, normalization of rows
and uniform augmentation. In fact, from the matrix ${ }_{(Q)} P$ we construct a new stochastic matrix $M=\left(M_{(i, j) ;(m, n)}\right)_{0 \leq i, j, m, n \leq Q}$. The principle of these procedure is given as follow:

1. Linear augmentation: The lost probability mass during the truncation of the matrix P is redistributed on the columns of the matrix ${ }_{(Q)} P$. More precisely, let

$$
{ }_{(Q)} A=\left({ }_{(Q)} A_{(i, j) ;(m, n)}\right)_{0 \leq i, j, m, n \leq Q}
$$

be a some stochastic matrix, for

$$
0 \leq i, j, m, n \leq Q
$$

we set:

$$
\begin{array}{r}
(Q) P_{(i, j) ;(m, n)}=P_{(i, j) ;(m, n)}+{ }_{(Q)} A_{(i, j) ;(m, n)} \times \\
\sum_{k>Q} \sum_{l>Q} P_{(i, k) ;(m, l)} \text { for } 0 \leq i, j, m, n \leq Q
\end{array}
$$

Particularly, we obtain:
i. The augmentation of the first column: if we choose ${ }_{(Q)} A_{(i, 1) ;(m, 1)}=1$ for $0 \leq i, m \leq Q ;$
ii. The uniform augmentation: if we $\operatorname{choose}_{(Q)} A_{(i, j) ;(m, n)}=(Q+1)^{-1}$ for $0 \leq$ $i, j, m, n \leq Q$.
2. Normalization: We set $S_{(i, Q) ;(m, n)}=$ $\sum_{j=0}^{Q} \sum_{n=0}^{N} P_{(i, j) ;(m, n)}$, then we choose for $0 \leq$ $i, j, m, n \leq Q$:

$$
{ }_{(Q)} P_{(i, j) ;(m, n)}=\frac{P_{(i, j) ;(m, n)}}{S_{(i, Q) ;(m, n)}}
$$

where we assign a large value to Q in order that $S_{(i, Q) ;(m, n)}>O$.

3.2.1 Augmentation of the First Column

In this case, we propose the following truncation:

$$
\left\{\begin{array}{c}
P 1_{(1, Q) ;(1,0)}=\frac{\lambda}{M} \tag{11}\\
P 1_{(i, j) ;(m, n)}=\widetilde{P}_{(i, j) ;(m, n)} \text { otherwise. }
\end{array}\right.
$$

In order to establish strong stability bounds, we require bounds on the basic input entities such as $\bar{\pi}$ (stationary distribution of the truncated model) and \bar{T} (taboo matrix corresponding to some taboo state of the matrix \bar{P}) and, we have
to specify the test function v that defines the v norm. Specifically, for $\alpha>1$ and $\beta>1$, we will choose

$$
\begin{equation*}
v(k, l)=\alpha^{k} \beta^{l} \tag{12}
\end{equation*}
$$

For our analysis, we introduce the following condition:

$$
\begin{equation*}
1<\frac{\mu}{\lambda} \tag{13}
\end{equation*}
$$

where $\mu=\min \left(\mu_{1}, \mu_{2}\right)$. This condition corresponds to the trafic intensity condition of the infinite model.

Essential for our numerical bounds on the deviation between stationary distributions $\bar{\pi}$ (stationary distribution of the truncated model) and π (stationary distribution of the infinite model) is a bound on the deviation of the transition matrix \bar{P} from P. This bound is provided in the following lemma.

Lemma 2. If condition (13) is satisfied, then

$$
\begin{equation*}
\|P 1-\widetilde{P}\| \leq \frac{\lambda}{\beta^{Q} M}=\triangle_{1}(\beta) \tag{14}
\end{equation*}
$$

Proof. By definition, we have

$$
\begin{gathered}
\|P 1-\widetilde{P}\|_{v}= \\
\left.\sup _{k=0,1} \sup _{0<l<Q} \frac{1}{v(k, l)} \sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j) \right\rvert\, P 1_{(k, l) ;(i, j)}-\widetilde{P}_{(k, l) ;(i, j)} \\
=\sup _{0 \leq i \leq Q} \sup _{0 \leq j \leq N} S(i, j)
\end{gathered}
$$

where

$$
\begin{gather*}
S(i, j)= \\
\frac{1}{v(i, j)} \sum_{m=0}^{Q} \sum_{n=0}^{N} v(m, n)\left|\widetilde{P}_{(i, j) ;(m, n)}-P 1_{(i, j) ;(m, n)}\right| \tag{15}
\end{gather*}
$$

- For $i=0$

$$
\begin{equation*}
S(i, j)=0 \tag{16}
\end{equation*}
$$

- For $i=1$

$$
\begin{align*}
& \text { If } 0 \leq j<Q \\
& \qquad S(i, j)=0 \tag{17}
\end{align*}
$$

$$
\begin{align*}
& \text { If } j=Q \\
& \qquad \begin{aligned}
S(i, j) & =\frac{1}{\alpha^{1} \beta^{Q}}\left(\alpha \beta^{0} \frac{\lambda}{M}+0+0+\right) \\
& =\frac{1}{\beta^{Q}} \frac{\lambda}{M}
\end{aligned}
\end{align*}
$$

From (16), (17) and (18) we have

$$
\|P 1-\widetilde{P}\|_{v}=\frac{1}{\beta^{Q}} \frac{\lambda}{M}
$$

Let $T 1$ denote the taboo Markov kernel for taboo state $(0,0)$; more specifically, for $(i, j),(m, n)$ let:

$$
T 1_{(i, j) \rightarrow(m, n)}=\left\{\begin{array}{c}
0 \text { if } i=j=0 \tag{19}\\
P 1_{(i, j) ;(m, n)} \text { otherwise }
\end{array}\right.
$$

In the following lemma we will identify the range for α and β that leads to verify the conditions $(a)-(d)$. Indeed, the main work in strong stability method is finding α and β such that $\|T 1\|_{v}<1$ where T is defined above in (19).

Lemma 3. Provided that condition (13) holds, and for $1<\beta<\frac{\mu}{M}$ and $\beta<\alpha<$ $1+\left(1-\frac{1}{\beta}\right) \frac{\mu}{M}$ we have

$$
\begin{align*}
\|T 1\|_{v}= & \max \left\{\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}, \alpha \frac{\lambda}{M}\right. \\
& \left.+\frac{\mu_{2}}{M}+\frac{1}{\beta} \frac{\mu_{1}}{M}\right\} \\
= & \rho 1(\alpha, \beta)<1 \tag{20}
\end{align*}
$$

Where $\mu=\min \left(\mu_{1}, \mu_{2}\right)$.
Proof. We have
$T 1 v(i, j)=\sum_{m=0}^{1} \sum_{n=0}^{Q} v(m, n) T 1_{(i, j) \rightarrow(m, n)}$.
For $i=0$

$$
\text { If } j=0
$$

$$
\begin{equation*}
T 1 v(0,0)=0 \tag{21}
\end{equation*}
$$

If $0<j \leq Q$

$$
\begin{align*}
T 1 v(0, j)= & \alpha \beta^{j} \frac{\lambda}{M}+\alpha^{0} \beta^{j}\left(1-\frac{\lambda}{M}-\frac{\mu_{2}}{M}\right) \\
& +\alpha^{0} \beta^{j-1} \frac{\mu_{2}}{M} \\
= & \beta^{j}\left(\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}\right) .(22) \tag{22}
\end{align*}
$$

From (21) and (22) we have

$$
\begin{equation*}
\rho \mathbf{1}_{(i=0,0 \leq j \leq Q)}=\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M} . \tag{23}
\end{equation*}
$$

For $i=1$

$$
\begin{aligned}
& \text { If } j=0 \\
& \begin{aligned}
T 1 v(1,0)= & \alpha \beta \frac{\lambda}{M}+\alpha^{0} \beta^{0} \frac{\mu_{1}}{M} \\
& +\alpha^{1} \beta^{0}\left(1-\frac{\lambda}{M}-\frac{\mu_{1}}{M}\right), \\
= & \alpha\left(\beta \frac{\lambda}{M}+\frac{1}{\alpha} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right), \\
\leq & \left.\alpha\left(\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M} 2\right) 4 .\right)
\end{aligned}
\end{aligned}
$$

If $0<j<Q$

$$
\begin{aligned}
T 1 v(1, j)= & \alpha \beta^{j+1} \frac{\lambda}{M}+\alpha^{0} \beta^{j} \frac{\mu_{1}}{M} \\
& +\alpha \beta^{j-1} \frac{\mu_{2}}{M} \\
= & \alpha \beta^{j}\left(\beta \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{1}}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}\right), \\
\leq & \alpha \beta^{j}\left(\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right)(25)
\end{aligned}
$$

If $j=Q$

$$
\begin{align*}
T 1 v(1, Q)= & \alpha \beta^{0} \frac{\lambda}{M}+\alpha^{0} \beta^{Q} \frac{\mu_{1}}{M} \\
& +\alpha^{1} \beta^{Q-1}\left(\frac{\mu_{2}}{M}\right), \\
= & \alpha \beta^{Q}\left(\frac{1}{\beta^{Q}} \frac{\lambda}{M}\right. \\
& \left.+\frac{1}{\alpha} \frac{\mu_{1}}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}\right)(2 \tag{26}
\end{align*}
$$

From (24), (25) and (26) we have

$$
\begin{equation*}
\rho \mathbf{1}_{(i=1,0 \leq j \leq Q)}=\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M} . \tag{27}
\end{equation*}
$$

From (23) and (27) we have

$$
\begin{align*}
\rho 1(\alpha, \beta)= & \max \left\{\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}\right. \\
& \left., \alpha \frac{\lambda}{M}+\frac{\mu_{2}}{M}+\frac{1}{\beta} \frac{\mu_{1}}{M}\right\} . \tag{28}
\end{align*}
$$

$\rho 1(\alpha, \beta)<1$ when $1<\beta<\frac{\mu}{\lambda}$ and $\beta<\alpha<$ $1+\left(1-\frac{1}{\beta}\right)$, then we obtain

$$
\begin{equation*}
T 1 v(i, j) \leq \rho 1(\alpha, \beta) v(i, j) \tag{29}
\end{equation*}
$$

for all $0 \leq i \leq 1,0 \leq j \leq Q$.
And it follows that the v-norm of $T 1$ is equal to $\rho 1(\alpha, \beta)$ which proves the claim.

In the following lemma we will identify the range for α and β that leads to finite v-norm of $P 1$. For that, we choose the measurable function

$$
h 1(i, j)=\mathbf{1}_{\{i=0, j=0\}}=\left\{\begin{array}{c}
1 \text { for } i=j=0 \tag{30}\\
0 \text { otherwise }
\end{array}\right.
$$

and the probability measure

$$
\begin{equation*}
\sigma 1_{(i, j)}=P_{(0,0) \rightarrow(i, j)} \tag{31}
\end{equation*}
$$

Lemma 4. Provided that (13) holds, the v-norm of $\pi 1$ is bounded by

$$
\begin{align*}
\|\pi 1\|_{v} & =\frac{\pi 1_{(0,0)}}{1-\rho 1(\alpha, \beta)}\left(1+(\alpha-1) \frac{\lambda}{M}\right)(3 \tag{32}\\
& =C_{0}(\alpha, \beta)<\infty \tag{33}
\end{align*}
$$

Where $\rho 1(\alpha, \beta)$ was defined in (28)
Proof. According to equation (9), we have

$$
\|\pi 1\|_{v} \leq \frac{(\sigma 1 v)(\pi h)}{1-\rho 1}
$$

By definition

$$
\begin{equation*}
\sigma 1 v=\sum_{i=0}^{1} \sum_{j=0}^{Q} \sigma 1_{(i, j)} v(i, j)=1+(\alpha-1) \frac{\lambda}{M} . \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi 1 h 1=\sum_{i=0}^{1} \sum_{j=0}^{Q} \pi 1(i, j) h 1(i, j)=\pi 1(0,0)>0 \tag{35}
\end{equation*}
$$

Hence

$$
\|\pi 1\|_{v}=\frac{\pi 1_{(0,0)}}{1-\rho 1(\beta)}\left(1+(\alpha-1) \frac{\lambda}{M}\right)=C_{0}(\alpha, \beta) .
$$

Let $\beta_{0}=\sup \{\beta: \rho 1(\alpha, \beta)<1\}$ and $\alpha_{0}=$ $\sup \{\alpha: \rho 1(\alpha, \beta)<1\}$

Theorem 5. For all β such that $1<\beta<\beta_{0}$ the discrete time Markov chain describing the overflow queue with finite buffers is v-strongly stable for the test function $v(k, l)=\alpha^{k} \beta^{l}$.

Proof. We have $\pi 1 h 1=\pi 1(0,0), \sigma 11=1$, and

$$
\begin{gathered}
\sigma 1 h 1=\sigma 1_{(0,0)}=1-\frac{\lambda}{M}>0 . \\
T 1_{(i, j) \rightarrow(m, n)}=\left\{\begin{array}{c}
0 \text { if } i=j=0 \\
P 1_{(i, j) ;(m, n)} \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Hence, the Kernel $T 1$ is non negative.

We verify that $\|P 1\|_{v}<\infty$. We have $T 1=P 1-h 1 \circ \sigma 1$ then $P 1=T 1+h 1 \circ \sigma 1$.

$$
\|P 1\|_{v} \leq\|T 1\|_{v}+\|h 1\|_{v} \cdot\|\sigma 1\|_{v}
$$

Or, according to equation (29)

$$
\begin{equation*}
\|T 1\|_{v} \leq \rho 1(\alpha, \beta)<1 \tag{36}
\end{equation*}
$$

According to equations (4) and (3), we have

$$
\|h 1\|_{v}=\sup _{i=0}^{1} \sup _{j=0}^{Q} \frac{|h 1(i, j)|}{v(i, j)}=1
$$

and

$$
\begin{aligned}
\|\sigma 1\|_{v} & =\sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|\sigma 1_{(i, j)}\right| \\
& =1+(\alpha-1) \frac{\lambda}{M} \\
& \leq 1+\left(\alpha_{0}-1\right) \frac{\lambda}{M}<\infty
\end{aligned}
$$

where $\alpha_{0}=\sup \{\alpha: \rho 1(\alpha, \beta)<1\}$. Then

$$
\|P 1\|_{v}<\infty
$$

By Theorem 5, the general bound provided Theorem 1 can be applied to the kernels \widetilde{P} and $P 1$ for our overflow model. Specifically, we will insert the individual bounds provided in Lemma 2, Lemma 3 and Lemma 4, which yields the following result.
Theorem 6. Let \widetilde{P} and $P 1$ be the steady state joint queue size distributions of discrete time Markov chains in the overflow model with finite capacity and the overflow model with infinite capacity respectively.
For all $1<\beta<\beta_{0}$ and $\alpha_{0}=\sup \{\alpha: \rho 1(\alpha, \beta)<$ $1\}$, and under the condition

$$
\triangle_{1}(\alpha, \beta)<\frac{1-\rho 1(\alpha, \beta)}{C_{01}(\alpha, \beta)}
$$

We have the following result:

$$
\begin{align*}
\|\pi 1-\widetilde{\pi}\|_{v} & \leq \frac{C_{01}(\alpha, \beta) C 1(\alpha, \beta) \triangle_{1}(\alpha, \beta)}{1-\rho 1(\alpha, \beta)-C 1(\alpha, \beta) \triangle_{1}(\alpha, \beta)} \\
& =\operatorname{SSB}_{1}(\alpha, \beta) \tag{37}
\end{align*}
$$

Where $C 1(\alpha, \beta)=1+C_{01}(\alpha, \beta)$.
Proof. Note that if $\beta \in] 1, \beta_{0}[$ and $\alpha \in] \beta, \alpha_{0}[$ already implies $C_{01}(\alpha, \beta)<\infty$ and $\rho 1(\alpha, \beta)<1$. Hence lemma 2 and lemma 4 apply.

3.2.2 Normalization of Rows

in this method, We set

$$
R(i, Q)=\sum_{j=1}^{Q} P(i, j),
$$

we choose for $1 \leq i, j \leq Q$:

$$
P_{Q}=\frac{P(i, j)}{R(i, Q)} .
$$

So, we propose the following truncation

$$
\left\{\begin{array}{c}
P 2_{(1, Q) \rightarrow(1, Q-1)}=\frac{\mu_{2}}{\mu_{1}+\mu_{2}} ; \tag{38}\\
P 2_{(1, Q) \rightarrow(0, Q)}^{\mu_{1}} ; \\
P 2_{(i, j) \rightarrow(m, n)}=\widetilde{P}_{(i, j) \rightarrow(m, n)} \text { otherwise }
\end{array}\right.
$$

In the following we establish the bounds for the normalization of rows' truncation technique. For this end, it's sufficient to proceed by following the same sketch of proof used in the first case of the truncation.

For our bounds, we require bounds on the basic input entities such as $\pi 2$ and $T 2$.
In order to establish bounds, we have to specify v. Specifically, for $\beta>1$ and $\alpha>1$, we will choose

$$
\begin{equation*}
v(k, l)=\alpha^{k} \beta^{l} . \tag{39}
\end{equation*}
$$

as our norm-defining mapping.
We introduce the following condition:

$$
\begin{equation*}
1<\frac{\mu}{\lambda} \tag{40}
\end{equation*}
$$

Where $\mu=\min \left(\mu_{1}, \mu_{2}\right)$, essential for our numerical bound on the deviation between stationary distribution $\pi 2$ and $\widetilde{\pi}$ and a bound on the deviation of the transition kernel \widetilde{P} from $P 2$. This bound is provided in the following lemma.

Lemma 7. If condition (40) is satisfied, then

$$
\begin{align*}
\|P 2-\widetilde{P}\| \leq & \frac{1}{\beta}\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}-\frac{\mu_{2}}{M}\right) \tag{46}\\
& +\frac{1}{\alpha}\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}-\frac{\mu_{1}}{M}\right), \\
= & \triangle_{2}(\alpha, \beta) \tag{41}
\end{align*}
$$

Proof. By definition, we have

$$
\begin{array}{r}
\|P 2-\widetilde{P}\|_{v}=\sup _{k=0,1} \sup _{0<l<Q} \frac{1}{v(k, l)} \times \\
\begin{array}{r}
\sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|P 2_{(k, l) ;(i, j)}-\widetilde{P}_{(k, l) ;(i, j)}\right|, \\
=\sup _{0 \leq i \leq Q} \sup _{0 \leq j \leq N} S^{\prime}(i, j),
\end{array} \tag{47}
\end{array}
$$

where

$$
\begin{array}{r}
S^{\prime}(i, j)=\frac{1}{v(i, j)} \times \tag{48}\\
\sum_{m=0}^{Q} \sum_{n=0}^{N} v(m, n)\left|\widetilde{P}_{(i, j) ;(m, n)}-P 2_{(i, j) ;(m, n)}\right| .
\end{array}
$$

For $i=0$

$$
\begin{equation*}
S^{\prime}(i, j)=0 \tag{43}
\end{equation*}
$$

For $i=1$

$$
\begin{align*}
& \text { if } 0 \leq j<Q \tag{49}\\
& \qquad S^{\prime}(i, j)=0, \tag{44}
\end{align*}
$$

$$
\begin{align*}
& \text { if } j=Q \\
& \begin{aligned}
S^{\prime}(i, j)= & \frac{1}{\alpha^{1} \beta^{Q}}\left(\alpha^{1} \beta^{Q-1}\left|\frac{\mu_{2}}{M}-\frac{\mu_{2}}{\mu_{1}+\mu_{2}}\right|\right. \\
& \left.+\alpha^{0} \beta^{Q}\left|\frac{\mu_{1}}{M}-\frac{\mu_{1}}{\mu_{1}+\mu_{2}}\right|\right) \\
\leq & \frac{1}{\beta}\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}-\frac{\mu_{2}}{M}\right) \\
& +\frac{1}{\alpha}\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}-\frac{\mu_{1}}{M}\right) .
\end{aligned}
\end{align*}
$$

From (43), (44) and (45), we have

$$
\begin{aligned}
\|P 2-\widetilde{P}\| & \leq \frac{1}{\beta}\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}-\frac{\mu_{2}}{M}\right)+\frac{1}{\alpha}\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}-\frac{\mu_{1}}{M}\right) \\
& \leq \triangle_{2}(\alpha, \beta)
\end{aligned}
$$

Let $T 2$ denote the taboo Markov kernel for taboo state $(0,0)$; more, for $(i, j),(m, n)$, we have

$$
T 2_{(i, j) ;(m, n)}=\left\{\begin{array}{c}
0 \text { if } i=j=0 \\
P_{(i, j) ;(m, n)} \text { otherwise }
\end{array}\right.
$$

Lemma 8. Provided that (40) holds, we have

$$
\begin{gathered}
\|T 2\|_{v}=\max \left\{\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}+\frac{\mu_{1}}{M}\right. \\
\left.\frac{1}{\beta}\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}-\frac{\mu_{2}}{M}\right)+\frac{1}{\alpha}\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}-\frac{\mu_{1}}{M}\right)\right\} \\
=\rho 2(\alpha, \beta)<1
\end{gathered}
$$

Proof. We have
$T 2 v(i, j)=\sum_{m=0}^{1} \sum_{n=0}^{Q} v(m, n) T 2_{(i, j) ;(m, n)}$.
For $i=0$

$$
\text { If } j=0 \quad T 2 v(0,0)=0
$$

If $0<j \leq Q$

$$
\begin{aligned}
T 2 v(0, j)= & \alpha^{1} \beta^{j} \frac{\lambda}{M}+\alpha^{0} \beta^{j-1} \frac{\mu_{2}}{M} \\
& +\alpha^{0} \beta^{j} \frac{\mu_{1}}{M}, \\
= & \beta^{j}\left(\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}+\frac{\mu_{1}}{M}\right) \\
= & \beta^{j} \rho_{1} .
\end{aligned}
$$

For $i=1$

$$
\text { If } j=0
$$

$$
\begin{aligned}
T 2 v(1,0)= & \alpha^{1} \beta^{1} \frac{\lambda}{M}+\alpha^{0} \beta^{0} \frac{\mu_{1}}{M} \\
& +\alpha^{1} \beta^{0} \frac{\mu_{2}}{M} \\
= & \alpha\left(\beta \frac{\lambda}{M}+\frac{1}{\alpha} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) \\
= & \alpha \rho_{2} .
\end{aligned}
$$

If $0<j<Q$

$$
\begin{align*}
T 2 v(1, j)= & \alpha^{1} \beta^{j} \frac{\lambda}{M}+\alpha^{0} \beta^{j} \frac{\mu_{1}}{M} \\
& +\alpha^{1} \beta^{j-1} \frac{\mu_{2}}{M} \\
= & \alpha \beta^{j}\left(\beta \frac{\lambda}{M}+\frac{1}{\alpha} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) \\
= & \alpha \beta^{j} \rho_{3} . \tag{51}
\end{align*}
$$

$$
\begin{align*}
& \text { If } j=Q \\
& \begin{aligned}
T 2 v(1, Q)= & \alpha^{1} \beta^{Q-1}\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}\right) \\
& +\alpha^{0} \beta^{Q}\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}\right), \\
= & \alpha^{1} \beta^{Q}\left\{\frac{1}{\beta}\left(\frac{\mu_{2}}{\mu_{1}+\mu_{2}}-\frac{\mu_{2}}{M}\right)\right. \\
& \left.+\frac{1}{\alpha}\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}-\frac{\mu_{1}}{M}\right)\right\} \\
= & \alpha^{1} \beta^{Q} \rho_{5} .
\end{aligned}
\end{align*}
$$

From (48), (49), (50) and (51), we obtain

$$
T 2 v(i, j) \leq \rho 2(\alpha, \beta) v(i, j)
$$

where

$$
\rho 2(\alpha, \beta)=\max \left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) .
$$

If $\beta>1$ and $\beta<\alpha<1+\left(1-\frac{1}{\beta}\right) \frac{\mu}{\lambda}$ with $\mu=$ $\min \left(\mu_{1}, \mu_{2}\right)$, then $\rho 2(\alpha, \beta)<1$
And the v-norm of $T 2$ is equal to $\rho 2(\alpha, \beta)$ which proves the claim.

To proof the v-stabiliry of the Markov chain P, we choose the measurable function

$$
h 2(i, j)=\mathbf{1}_{\{i=0, j=0\}}=\left\{\begin{array}{c}
1 \text { for } i=j=0 \tag{53}\\
0 \text { otherwise }
\end{array}\right.
$$

and the measure

$$
\begin{equation*}
\sigma 2_{(i, j)}=P_{(0,0) \rightarrow(i, j)} . \tag{54}
\end{equation*}
$$

Lemma 9. Provided that (40) holds, the v-norm of $\pi 2$ is bounded by

$$
\begin{align*}
\|\pi 2\|_{v} & =\frac{\pi 2_{(0,0)}}{1-\rho 2(\alpha, \beta)}\left(\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right)(5 \\
& =C_{02}(\alpha, \beta)<\infty . \tag{56}
\end{align*}
$$

Proof. We have [1]

$$
\|\pi 2\|_{v} \leq \frac{(\sigma 2 v)(\pi 2 h)}{1-\rho 2(\alpha, \beta)}
$$

By definition

$$
\begin{align*}
\sigma 2 v & =\sum_{i=0}^{1} \sum_{j=0}^{Q} \sigma 2_{(i, j)} h 2(i, j), \\
& =\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M} . \tag{57}
\end{align*}
$$

and

$$
\begin{equation*}
\pi 2 h 2=\sum_{i=0}^{1} \sum_{j=0}^{Q} \pi(i, j) h(i, j)=\pi(0,0)>0 . \tag{58}
\end{equation*}
$$

Hence

$$
\begin{align*}
\|\pi 2\|_{v} & \left.=\frac{\pi_{(0,0)}}{1-\rho 2(\alpha, \beta)}\left(\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) 59\right) \\
& =C_{02}(\alpha, \beta) . \tag{60}
\end{align*}
$$

Let

$$
\beta_{0}=\sup \{\beta: \rho 2(\alpha, \beta)<1\},
$$

and

$$
\alpha_{0}=\sup \{\alpha: \rho 2(\alpha, \beta)<1\} .
$$

Theorem 10. For all α and β such that $1<\beta<$ $\beta_{0}, \beta<\alpha<\alpha_{0}$ the discrete time Markov chain describing the overflow queue with finite buffers is v-strongly stable for the test function $v(k, l)=$ $\alpha^{k} \beta^{l}$.

Proof. We have $\pi 2 h 2=\pi 2(0,0), \sigma 2 \mathbf{1}=1$, and

$$
\begin{gathered}
\sigma 2 h 2=\sigma 2_{(0,0)}=1-\frac{\lambda}{M}>0 . \\
T 2_{(i, j) ;(m, n)}=\left\{\begin{array}{c}
0 \text { if } i=j=0 \\
P 2_{(i, j) ;(m, n)} \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Hence, the Kernel $T 2$ is non negative.
We verify that $\|P 2\|_{v}<\infty$. We have
$T 2=P 2-h 2 \circ \sigma 2$ then $P=T 2+h 2 \circ \sigma 2$.

$$
\|P 2\|_{v} \leq\|T 2\|_{v}+\|h 2\|_{v} \cdot\|\sigma 2\|_{v}
$$

Or, according to equation (47)

$$
\begin{equation*}
\|T 2\|_{v} \leq \rho 2(\alpha, \beta)<1 \tag{61}
\end{equation*}
$$

According to equations (4) and (3), we have

$$
\|h 2\|_{v}=\sup _{i=0}^{1} \sup _{j=0}^{Q} \frac{|h 2(i, j)|}{v(i, j)}=1,
$$

and

$$
\begin{aligned}
\|\sigma 2\|_{v} & =\sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|\sigma 2_{(i, j)}\right| \\
& =1+(\alpha-1) \frac{\lambda}{M} \\
& \leq 1+\left(\alpha_{0}-1\right) \frac{\lambda}{M}<\infty .
\end{aligned}
$$

where $\alpha_{0}=\sup \{\alpha: \rho 2(\alpha, \beta)<1\}$.
Then

$$
\|P 2\|_{v}<\infty .
$$

By this theorem, the general bound provided by Kartachov [1] can be used to the Kernel \widetilde{P} and $P 2$ for our overflow model.
Theorem 11. Let \widetilde{P} and $P 2$ be the steady state joint queue size distributions of discrete time Markov chains in the overflow model with finite capacity and the overflow model with infinite capacity respectively.
For all $1<\beta<\beta_{0}$ and $\alpha_{0}=\sup \{\alpha: \rho 2(\alpha, \beta)<$ $1\}$, and under the condition

$$
\triangle_{2}(\alpha, \beta)<\frac{1-\rho 2(\alpha, \beta)}{C_{02}(\alpha, \beta)},
$$

We have the following result:

$$
\begin{align*}
\|\pi 2-\widetilde{\pi}\|_{v} & \leq \frac{C_{02}(\alpha, \beta) C 2(\alpha, \beta) \triangle_{2}(\alpha, \beta)}{1-\rho 2(\alpha, \beta)-C 2(\alpha, \beta) \triangle_{2}(\alpha, \beta)} \\
& =\mathbf{S S B}_{2}(\alpha, \beta) \tag{62}
\end{align*}
$$

Where $C 2 \alpha, \beta)=1+C_{02}(\alpha, \beta)$.
Proof. Note that if $\beta \in] 1, \beta_{0}[$ and $\alpha \in] \beta, \alpha_{0}[$ already implies $C_{02}(\alpha, \beta)<\infty$ and $\rho 2(\alpha, \beta)<1$. Hence lemma 7 and lemma 9 apply.

3.2.3 Uniform Augmentation

Let

$$
\theta_{((i, j), Q)}=\sum_{m=0}^{1} \sum_{n=Q+1}^{\infty} P_{(i, j) ;(m, n)}
$$

For $i=0$

$$
\theta_{((0, j), Q)}=0
$$

For $i=1$

$$
\text { If } j<Q
$$

$$
\theta_{((1, j), Q)}=0
$$

$$
\text { If } j=Q
$$

$$
\theta_{((1, Q), Q)}=\sum_{n=Q+1}^{\infty} P_{(1, Q) ;(0, n)}+\sum_{n=Q+1}^{\infty} P_{(1, Q) ;(1, n)}
$$

$$
\begin{equation*}
=\frac{\lambda}{M} \tag{67}
\end{equation*}
$$

We propose the following truncation

$$
\left\{\begin{array}{c}
P 3_{(1, Q) ;(1, Q-1)}=\frac{\mu_{2}}{M}+\frac{1}{2(Q+1)} \frac{\lambda}{M} \tag{68}\\
P 3_{(1, Q) ;(0, Q)}=\frac{\mu_{1}}{M}+\frac{1}{2(Q+1)} \frac{\lambda}{M} \\
P 3_{(1, Q) ;(i, j)}=\frac{1}{2(Q+1)} \frac{\lambda}{M} \\
P 3_{(i, j) ;(m, n)}=\widetilde{P}_{(i, j) ;(m, n)} \text { otherwise. }
\end{array}\right.
$$

For our bounds, we require bounds on the basic input entities such as $\pi 3$ and $T 3$.
In order to establish bounds, we have to specify v. Specifically, for $\beta>1$ and $\alpha>1$, we will choose

$$
\begin{equation*}
v(k, l)=\alpha^{k} \beta^{l} . \tag{64}
\end{equation*}
$$

as our norm-defining mapping.
We introduce the following condition:

$$
\begin{equation*}
1<\frac{\mu}{\lambda} \tag{65}
\end{equation*}
$$

Where $\mu=\min \left(\mu_{1}, \mu_{2}\right)$, essential for our numerical bound on the deviation between stationary distribution $\pi 3$ and $\widetilde{\pi}$ and a bound on the deviation of the transition kernel \widetilde{P} from $P 3$. This bound is provided in the following lemma.

Lemma 12. If condition (65) is satisfied, then

$$
\begin{align*}
\|P 3-\widetilde{P}\| & \leq \frac{1}{(\beta-1)} \frac{1}{(Q+1)} \frac{\lambda}{M} \\
& =\triangle_{3}(\alpha, \beta) \tag{66}
\end{align*}
$$

Proof. By definition, we have

$$
\begin{aligned}
\|P 3-\widetilde{P}\|_{v}= & \sup _{k=0,1} \sup _{0<l<Q} \frac{1}{v(k, l)} \times \\
& \sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|P 3_{(k, l) ;(i, j)}-\widetilde{P}_{(k, l) ;(i, j)}\right|, \\
= & \sup _{0 \leq i \leq Q} \sup _{0 \leq j \leq N} S^{\prime \prime}(i, j),
\end{aligned}
$$

where

$$
S^{\prime \prime}(i, j)=
$$

$$
\frac{1}{v(i, j)} \sum_{m=0}^{Q} \sum_{n=0}^{N} v(m, n)\left|\widetilde{P}_{(i, j) ;(m, n)}-P 3_{(i, j) ;(m, n)}\right| \cdot(
$$

For $i=0$

$$
S^{\prime \prime}(i, j)=0
$$

For $i=1$

$$
\begin{align*}
& \text { if } 0 \leq j<Q \\
& \qquad S^{\prime \prime}(i, j)=0, \tag{69}
\end{align*}
$$

$$
\begin{align*}
& \text { if } j=Q \\
& \begin{aligned}
& S^{\prime \prime}(i, j)= \frac{1}{\alpha \beta^{Q}}\left\{\alpha \beta^{Q-1} \frac{1}{2(Q+1)} \frac{\lambda}{M}\right. \\
&+\alpha^{0} \beta^{Q} \frac{1}{2(Q+1)} \frac{\lambda}{M} \\
&+\sum_{j=0}^{Q-1} \alpha^{0} \beta^{j} \frac{1}{2(Q+1)} \frac{\lambda}{M} \\
&\left.+\sum_{j=0, j \neq Q-1}^{Q} \alpha^{1} \beta^{j} \frac{1}{2(Q+1)} \frac{\lambda}{M}\right\} \\
& \leq\left(1+\frac{1}{\alpha}\right) \frac{1}{2(Q+1)} \frac{\lambda}{M}\left(1+\frac{1}{\beta-1}\right) \cdot(70)
\end{aligned}
\end{align*}
$$

From (68), (69) and (70), we have

$$
\begin{align*}
& \text { If } j=0 \\
& \begin{aligned}
& T 3 v(1,0)= \alpha^{1} \beta^{1} \frac{\lambda}{M}+\alpha^{0} \beta^{0} \frac{\mu_{1}}{M} \\
&+\alpha^{1} \beta^{0} \frac{\mu_{2}}{M} \\
&= \alpha\left(\beta \frac{\lambda}{M}+\frac{1}{\alpha} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) \\
&= \alpha \rho_{2} . \\
& \text { If } 0<j<Q \\
& T 3 v(1, j)= \alpha^{1} \beta^{j} \frac{\lambda}{M}+\alpha^{0} \beta^{j} \frac{\mu_{1}}{M} \\
&+\alpha^{1} \beta^{j-1} \frac{\mu_{2}}{M}, \\
&= \alpha \beta^{j}\left(\beta \frac{\lambda}{M}+\frac{1}{\alpha} \frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) \\
&= \alpha \beta^{j} \rho_{3} .
\end{aligned}
\end{align*}
$$

$$
\begin{aligned}
\|P 3-\widetilde{P}\| & \leq\left(1+\frac{1}{\alpha}\right) \frac{1}{2(Q+1)} \frac{\lambda}{M}\left(1+\frac{1}{\beta-1}\right) \\
& =\triangle_{3}(\alpha, \beta)
\end{aligned}
$$

Let $T 3$ denote the taboo Markov kernel for taboo state $(0,0)$; more, for $(i, j),(m, n)$, we have

$$
T 3_{(i, j) ;(m, n)}=\left\{\begin{array}{c}
0 \text { if } i=j=0 \tag{71}\\
P 3_{(i, j) ;(m, n)} \text { otherwise }
\end{array}\right.
$$

Lemma 13. Provided that (65) holds, we have

$$
\begin{equation*}
\|T 3\|_{v}=\rho 3(\alpha, \beta)<1 \tag{72}
\end{equation*}
$$

Proof. We have
$T 3 v(i, j)=\sum_{m=0}^{1} \sum_{n=0}^{Q} v(m, n) T 2_{(i, j) ;(m, n)}$.
For $i=0$

$$
\begin{align*}
& \text { If } j=0 \quad T 3 v(0,0)=0
\end{align*}
$$

If $0<j \leq Q$
$T 3 v(0, j)=\alpha^{1} \beta^{j} \frac{\lambda}{M}+\alpha^{0} \beta^{j-1} \frac{\mu_{2}}{M}+\alpha^{0} \beta^{j} \frac{\mu_{1}}{M}$,
$=\beta^{j}\left(\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}+\frac{\mu_{1}}{M}\right) \quad{ }^{M}$ It is easy to proof that for $1<\beta<\frac{\mu}{\lambda}$ and $\beta<$ $=\beta^{j}\left(\alpha \frac{\lambda}{M}+\frac{1}{\beta} \frac{\mu_{2}}{M}+\frac{\mu_{1}}{M}\right) \quad \alpha<1+\left(1-\frac{1}{\beta}\right) \frac{\mu}{\lambda}$
$=\beta^{j} \rho_{1}$.
(74) have

$$
\rho 3(\alpha, \beta)<1
$$

For $i=1$

To proof the v-stabiliry of the Markov chain $P 3$, we choose the measurable function

$$
h 3(i, j)=\mathbf{1}_{\{i=0, j=0\}}=\left\{\begin{array}{c}
1 \text { for } i=j=0 \tag{78}\\
0 \text { otherwise }
\end{array}\right.
$$

and the measure

$$
\begin{equation*}
\sigma 3_{(i, j)}=P 3_{(0,0) \rightarrow(i, j)} \tag{79}
\end{equation*}
$$

Lemma 14. Provided that (65) holds, and for $1<\beta<\frac{\mu}{\lambda}$ and $\beta<\alpha<1+\left(1-\frac{1}{\beta}\right) \frac{\mu}{\lambda}$ the v norm of $\pi 3$ is bounded by

$$
\begin{align*}
\|\pi 3\|_{v} & =\frac{\pi 3_{(0,0)}}{1-\rho 3(\alpha, \beta)}\left(\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right), \\
& =C 03(\alpha, \beta) . \tag{80}
\end{align*}
$$

Proof. We have [1]

$$
\|\pi 3\|_{v} \leq \frac{(\sigma 3 v)(\pi 3 h)}{1-\rho 3(\alpha, \beta)}
$$

By definition

$$
\begin{align*}
\sigma 3 v & =\sum_{i=0}^{1} \sum_{j=0}^{Q} \sigma 3_{(i, j)} h 3(i, j) \\
& =\frac{\lambda}{M} \alpha \beta^{0}+\left(\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) \alpha^{0} \beta^{0} \\
& =\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M} \tag{81}
\end{align*}
$$

and

$$
\begin{equation*}
\pi 3 h=\sum_{i=0}^{1} \sum_{j=0}^{Q} \pi 3(i, j) h(i, j)=\pi 3(0,0)>0 \tag{82}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\|\pi\|_{v} & =\frac{\pi 3_{(0,0)}}{1-\rho 3(\alpha, \beta)}\left(\alpha \frac{\lambda}{M}+\frac{\mu_{1}}{M}+\frac{\mu_{2}}{M}\right) \\
& =C_{03}(\alpha, \beta)
\end{aligned}
$$

Let

$$
\beta_{0}=\sup \{\beta: \rho 3(\alpha, \beta)<1\}
$$

and

$$
\alpha_{0}=\sup \{\alpha: \rho 3(\alpha, \beta)<1\}
$$

Theorem 15. For all α and β such that $1<\beta<$ $\beta_{0}, \beta<\alpha<\alpha_{0}$ the discrete time Markov chain describing the overflow queue with finite buffers is v-strongly stable for the test function $v(k, l)=$ $\alpha^{k} \beta^{l}$.

Proof. We have $\pi 3 h 3=\pi 3(0,0), \sigma 31=1$, and

$$
\begin{gathered}
\sigma 3 h 3=\sigma 3_{(0,0)}=1-\frac{\lambda}{M}>0 \\
T 3_{(i, j) ;(m, n)}=\left\{\begin{array}{c}
0 \text { if } i=j=0 \\
P 3_{(i, j) ;(m, n)} \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Hence, the Kernel $T 3$ is non negative.
We verify that $\|P 3\|_{v}<\infty$. We have
$T 3=P 3-h 3 \circ \sigma 3$ then $P 3=T 3+h 3 \circ \sigma 3$.

$$
\|P 3\|_{v} \leq\|T 3\|_{v}+\|h 3\|_{v} \cdot\|\sigma 3\|_{v}
$$

Or, according to equation (72)

$$
\begin{equation*}
\|T 3\|_{v} \leq \rho 3(\alpha, \beta)<1 \tag{83}
\end{equation*}
$$

According to equations (4) and (3), we have

$$
\|h 3\|_{v}=\sup _{i=0}^{1} \sup _{j=0}^{Q} \frac{|h 3(i, j)|}{v(i, j)}=1
$$

and

$$
\begin{aligned}
\|\sigma 3\|_{v} & =\sum_{i=0}^{1} \sum_{j=0}^{Q} v(i, j)\left|\sigma 3_{(i, j)}\right| \\
& =1+(\alpha-1) \frac{\lambda}{M} \\
& \leq 1+\left(\alpha_{0}-1\right) \frac{\lambda}{M}<\infty
\end{aligned}
$$

where $\alpha_{0}=\sup \{\alpha: \rho 3(\alpha, \beta)<1\}$. Then

$$
\|P 3\|_{v}<\infty
$$

By this theorem, the general bound provided by Kartachov [1] can be used to the Kernel \widetilde{P} and $P 3$ for our overflow model.
Theorem 16. Let \widetilde{P} and P3 be the steady state joint queue size distributions of discrete time Markov chains in the overflow model with finite capacity and the overflow model with infinite capacity respectively.
For all $1<\beta<\beta_{0}$ and $\alpha_{0}=\sup \{\alpha: \rho 3(\alpha, \beta)<$ $1\}$, and under the condition

$$
\triangle_{3}(\alpha, \beta)<\frac{1-\rho 3(\alpha, \beta)}{C_{03}(\alpha, \beta)}
$$

We have the following result:

$$
\begin{align*}
\|\pi 3-\widetilde{\pi}\|_{v} & \leq \frac{C_{03}(\alpha, \beta) C 3(\alpha, \beta) \triangle_{3}(\alpha, \beta)}{1-\rho 3(\alpha, \beta)-C 3(\alpha, \beta) \triangle_{3}(\alpha, \beta)} \\
& =\operatorname{SSB}_{\mathbf{3}}(\alpha, \beta) . \tag{84}
\end{align*}
$$

Where $C 3(\alpha, \beta)=1+C_{03}(\alpha, \beta)$.

Proof. Note that if $\beta \in] 1, \beta_{0}[$ and $\alpha \in] \beta, \alpha_{0}[$ already implies $C_{03}(\alpha, \beta)<\infty$ and $\rho(\alpha, \beta)<1$. Hence lemma 5.1 and lemma 5.3 apply.

4 Numerical Examples

In this section we will apply our bounds put forward in Theorem 6, Theorem 11 and Theorem 16. Below we give the numerical results of the computing of the three bounds $\mathbf{S S B}_{1}, \mathbf{S S B}_{2}$ and $\mathbf{S S B}_{3}$, where we set $\lambda=0.1, \mu_{1}=2.5, \mu_{2}=2$, $\alpha=6.8$ and $\beta=6.7$. Table 1 (see also the figure) shows the numerical values of the three computed bounds for the used techniques of truncation, which are:

Figure 1: Les deux bornes obtenues par l'augmentation uniforme
$\mathbf{S S B}_{1}$: Augmentation of the first column;
$\mathbf{S S B}_{2}$: Normalization of rows;

SSB $_{3}$: Uniform Augmentation.

Q	SSB $_{1}$	$\mathbf{S S B}_{2}$	$\mathbf{S S B}_{3}$
1	0.344803530673826	0.341674708676110	0.197024072883162
2	0.043597387957457	0.341641102156400	0.129427358770771
3	0.004641753432986	0.341640279388323	0.096367343570474
4	$4.288049412137165 e-004$	0.341640260200825	0.076760384611717
5	$3.581751061599958 e-005$	0.341640259761924	0.063783050422334
6	$2.781737851868289 e-006$	0.341640259751964	0.054559125816011
7	$2.045226117079339 e-007$	0.341640259751739	0.047665958926824
8	$1.441282369176394 e-008$	0.341640259751734	0.042319219279720
9	$9.813867379097345 e-010$	0.341640259751734	0.038050999520226
10	$6.500052949288499 e-011$	0.341640259751734	0.034564866103792

Table 1: Numerical results of the used truncation techniques

From these numerical results, it is easy to see that, the values of our bounds $\mathbf{S S B}_{1}, \mathbf{S S B}_{2}$ and $\mathbf{S S B}_{3}$ decrease as the value of level truncation Q increases and, for the fixed parameters of our model, the technique of the augmentation of the first column provides the best approximation to π while that of the normalization of rows provides the worst.

5 Further Research

Analytical solutions for multi-server queues have been obtained for a few special cases and, many approximation techniques of truncation have been developed on the performance analysis of this kind of queueing models. The error bound results are essentially based on the strong stability approach. This approach is also applicable to other performance measures and to more general queueing networks such that retrial multi-server queues. Further research in this direction is thus recommended.

References:

[1] Aïssani, D. and Kartashov, N.V. (1983) Ergodicity and stability of Markov chains with respect to operator topology in the space of transition kernels. Doklady Akademii Nauk Ukrainskoi SSR 11 (seriya A), 3-5.
[2] Ching, W. and Ng, M. K. 2006. Markov chains: Models, algorithms and applications, Springer, New York.
[3] Cooper, R. B. 1984. Introduction to Queueing Theory, North-Holland, Amsterdam.
[4] Disney, R. L. and König, D. (1984) Queueing networks: a survey of their random processes. SIAM Review 27, 335-403.
[5] Gibson, D. and Seneta, D. (1987) Augmented truncations of infinite stochastic matrices. Journal of Applied Probability 24, 600-608.
[6] Guérin, R. and Lien, L. Y. C. (1990) Overflow analysis for finite waiting room systems. IEEE Transactions on Communications 38, 1569-1577.
[7] Heyman, D. P. (1991) Approximating the stationary distribution of an infinite stochastic matrix. Journal of Applied Probability 28, 96-103.
[8] Heyman, D. P. and Whitt, W. (1989) Limits of queues as the waiting room grows. Queueing Systems 5, 381-392.
[9] Hordijk, A. and van Dijk, N. M. (1981) Networks of Queues with Blocking. In Performance '81, North-Holland, Amsterdam, 5165.
[10] Kalashnikov, V. and Rachev, S. 1990. Mathematical Methods For Construction of Queueing Models, Wadsworth and Brooks Cole.
[11] Kartashov, N.V. (1986) Strongly stable Markov chains. Journal of Soviet Mathematics 34, 1493-1498.
[12] Kartashov, N.V. 1996. Strong Stable Markov Chains, Edition VSP, Utrecht, The Netherlands.
[13] Koury, J. R., McAllister, D. F. and Stewart, W. J. (1984) Iterative methods for computing stationary distributions of nearly decomposable Markov chains. SIAM J. Alg. Disc. Meth. 5, 164-186.
[14] Krieger, U. R., Müller-Clostermann, B. and Sczittnick, M. (1990) Modeling and analysis of communication systems based on computational methods for Markov chains. IEEE Journal on selected areas in communications 8, 1630-1648.
[15] Latouche, G. and Ramaswami, V. 1999. Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA, Alexandria.
[16] Neuts, M. F. 1981. Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach, Johns Hopkins, Baltimore.
[17] Parthasarathy, P. R. and Sudhesh, R. (2005) The overow process from a statedependent queue. Int. J. Comput. Math., 82, 10731093.
[18] Seneta, E. (1967) Finite approximation to infinite non-negative matrices. Proc. Camb. Phil. Soc. 63, 983-992.
[19] Seneta, E. (1980) Computing the stationary distribution for infinite Markov chains. Linear Algebra Appl. 34, 259-267.
[20] Seneta, E. 1980. Non-negative Matrices and Markov Chains, Springer-Verlag, New York.
[21] Tweedie, R. L. (1998) Truncation approximations of invariant measures for Markov chains. Journal of Applied Probability 35, 517-536.
[22] van Dijk, N.M. (1991) Truncation of Markov chains with applications to queueing. Operations Research 39, 1018-1026.
[23] van Dijk, N.M. (2008) Error bounds for state space truncation of finite Jackson networks. European Journal of Operational Research 186, 164-181.
[24] van Doorn, E. A. (1984) On the overflow process from a finite markovian queue. Perf. Evalf. 4, 233-240.
[25] Wolf, D. (1980) Approximation of the invariant probability distribution of an infinite stochastic matrix. Adv. Appl. Probab 12, 710-726.
[26] Zhao, Y. Q. and Liu, D. (1996) The censored Markov chain and the best augmentation. Journal of Applied Probability 33, 623-629.

Editors:

Prof. Nikos E. Mastorakis, Technical University of Sofia, Bulgaria
Prof. Adam Ding, Northeastern University, USA
Prof. Marina V. Shitikova, Voronezh State University of Architecture and Civil Engineering, Russia

Committee Members-Reviewers:

Melike Aydoğan
Martin Bohner
Martin Schechter
Ivan G. Avramidi
Michel Chipot
Xiaodong Yan
Ravi P. Agarwal
Yushun Wang
Detlev Buchholz
Patricia J. Y. Wong
Andrei Korobeinikov
Jim Zhu
Ferhan M. Atici
Gerd Teschke
Meirong Zhang
Lucio Boccardo
Shanhe Wu
Natig M. Atakishiyev
Nikos E. Mastorakis
Jianming Zhan
Narcisa C. Apreutesei
Chun-Gang Zhu
Abdelghani Bellouquid
Jinde Cao
Josef Diblik
Jianqing Chen
Naseer Shahzad
Sining Zheng
Leszek Gasinski
Satit Saejung
Juan J. Trujillo
Tiecheng Xia
Stevo Stevic
Lucas Jodar
Noemi Wolanski
Zhenya Yan
Juan Carlos Cortes Lopez
Wei-Shih Du
Kailash C. Patidar
Hossein Jafari
Abdel-Maksoud A Soliman
Janusz Brzdek
Dragan Randjelovic
Adamou-Mitiche Amel B.H.
Ahmed Zeeshan
Ali Sadeghi
Alina Adriana Minea
Anton V. Doroshin
Carlos E. Formigoni
Claudio Guarnaccia
Daniela Cristiana Docan
Elena Zaitseva

Gabriel Frumusanu
Genqi Xu
Gheorghe Badea
Gheorghe Mugurel Radulescu
Huashui Zhan Zhan
Ioana Adrian
Jose Manuel Mesa Fernández
Luca Di Persio
Majid Mohammed Ali
Maria Dobritoiu
Matteo Davide Lorenzo Dalla Vedova
Mehmet Emir Köksal
Melike Aydogan
Mihaela Neamtu
Mihaiela Iliescu
Nik Ruzni Nik Idris
Nikos Loukeris
Panagiotis Gioannis
Punyaban Patel
Richard Alexander De La Cruz Guerrero
Roman Prokop
Roots Larissa
Snezhana Georgieva Gocheva-Ilieva
Tiberiu Socaciu
Xi Cheng
Zaharia Sebastian
Zahéra Mekkioui

Table of Contents

Keynote Lecture 1: Gamma Function Expansions For Analytic Solutions of Infinite Linear 12
Recursions: Polynomial Coefficient Cases
Metin Demiralp
Plenary Lecture 1: Soliton-Like Solutions in the Problems of Vibrations 2 f Nonlinear 14 Mechanical Systems: Survey
Marina V. Shitikova
Plenary Lecture 2: Equitability and Dependence Measures 15
Adam Ding
Plenary Lecture 3: Relation of Temporal Probability Density Functions: An Application in 16 Finance
Edi Cahyono
Plenary Lecture 4: Change Detection in Dependent Processes with Applications to Photovoltaic 17
Image Data
Ansgar Steland
On Reduction of Measurement Errors at Estimation of Distributions in Dose-Effect 19 Relationships
Mikhail Tikhov, Tatjana Borodina, Maxim Ivkin
Axially Monotonicity Preserving Curves and Surfaces 28
Jorge Delgado, Juan Manuel Pena
Gamma Function Series Solutions to a Linear Homogeneous Infinite Recursion with Polynomial 33 Coefficients
Metin Demiralp
Drag Force Exerted on an Axisymmetric Particle Translating in a Confined Flow 40
Mounia Makhoul, Philippe Beltrame, Maminirina Joelson
On Statistical Preprocessing of PV Field Image Data Using Robust Regression 48
Ansgar Steland, Evgenii Sovetkin
Dantzig-Wolfe Decomposition of Extremal Problems 52
Nikolai Oskorbin, Dmitry Khvalynskiy
Sensitivity of Predicted Future State of Dynamical Systems to Information from Different 56 Sources of Observations
Sergei Soldatenko, Denis Chichkine
Hemivariational Inequality for a Planar Flow of Incompressible Generalized Newtonian Fluid 66
Stanislaw Migorski
On Some New Exact Solutions of Special Type of the Nonlinear Dodd-Bullough-Mikhailov 76 Equation
Haci Mehmet Baskonus, Hasan Bulut, Fethi Bin Muhammad Belgacem
Rigidity in Arithmetic Algebraic Geometry and in Dynamics 86
Nikolaj Glazunov
Numerical Modeling of Nonlinear Heat Transfer Problems with a Variable Density and Source 92
M. Aripov, Z. Rakhmonov
Hidden Markov and Mixture Panel Data Models for Ordinal Variables Derived from Original 98 Continuous Responses
Fulvia Pennoni, Giorgio Vittadini
Geometrical Characterization of RN-Operators between Locally Convex Vector Spaces 107
Oleg Reinov, Asfand Fahad
Statistical Causality in Continuous Time 112
Ljiljana Petrovic
Some New Analytical Solutions for the Nonlinear Time-Fractional KdV-Burgers-Kuramoto 118
Equation
Hasan Bulut, Fethi Bin Muhammad Belgacem, Haci Mehmet Baskonus
Navier-Stokes Equations-Millennium Prize Problems 130
Asset Durmagambetov, Leyla Fazilova
Strong Second Order Necessary Optimality Conditions139Leonid Minchenko, Alexey Leschov
Low-Velocity Impact Response of Non-Linear Doubly Curved Shallow Shells with Rectangular 146
Base under 3:1 Internal Resonance
Y. A. Rossikhin, M. V. Shitikova, Muhammed Salih Khalid J. M.
Estimators of the Equivalence, Tolerance and Preference Relations on the Basis of Pairwise 156
Comparisons
Leszek Klukowski
On the L-Strong and Greedy Property of Trigonometric System 166
Martin Grigoryan
Groenstein FP-Injective Dimension Relative to a Semidualizing Bimodule 172
Jianmin Xing, Wei Shao
Phenomenological Analysis of Non-Linear Vibrations of a Fractionally Damped Thin Plate with 180
1:1 Internal Resonance
Y. A. Rossikhin, M. V. Shitikova, J. C. Ngenzi
Lie Group Analysis of Second Order Non-Linear Differential Equations with Retarded 190 Argument
Laheeb Muhsen, Normah Maan
Strong Approximation for an Overflow Queueing Network 196
Karima Adel-Aissanou, Karim Abbas, Djamil AissaniEmulating Rasterization Using Ubiquitous Communication211Sabino Maggi, Kerstin Dreher, Christian Cremonesi, Paul P. Fahey, Martha R. Jackson
A Fast Heuristic for Large-Scale Assembly Job Shop Scheduling Problems with Bill of Materials 216
Gianpaolo Ghiani, Antonio Grieco, Antonio Guerrieri, Andrea Manni, Emanuele Manni
A Benchmarking Algorithm to Determine Maximum Lifetime Communication Topologies in 224 Cognitive Radio Ad Hoc Networks
Natarajan Meghanathan
An Interdisciplinary Model for Assessing the Quality of Residential Areas using Mathematical 230 Statistics
Justyna Kobylarczyk, Dawid Zajac
Coupled vs. Uncoupled Analyses for Seismic Assessment of Offshore Wind Turbines 238
Natale Alati, Giuseppe Failla, Felice Arena
Nonlinear Behaviour of the Concrete Specimen under Shear Load248Petr Hradil, Jiri Kala
g-Jitter Induced Free Convection of Heat and Mass Transfer Flow near a Two-Dimensional 254Stagnation Point in Micropolar FluidN. Afiqah Rawi, Y. Jiann Lim, A. Rahman M. Kasim, Mukheta Isa, Sharidan ShafieDualism of Nonlinear Circuits and Nonlinear Resonant Mediums263Rassvetalov Leonid Alexandrovich
Hybrid Formulations in Low Frequency Computational Electromagnetics 268
Antonino Musolino, Marco Raugi
Improved Maintenance Algorithms for Dynamic Cluster-Based Wireless Sensor Network 277
Asim Zeb, A. K. M. Muzahidul Islam, Sabariah Baharun, Tan Lit Ken, Yoshiaki Katayama
Statistical Analysis of Octal Rings as Mechanical Force Transducers 288
Khaled A. Abuhasel, Essam Soliman
Comparison of Different Methods for Numerical Approximation of Static Characteristics of 297 McKibben Pneumatic Artificial Muscle
Ján Pitel’, Mária Tóthová, Stella Hrehová, Alena VagaskáInterpolatory Extensions to Univariate Taylor Series: Separate Multinode Ascending Derivative 302Expansion (SMADE)
Metin Demiralp
Shaking Table Testing of a Multi-Storey Post-tensioned Timber Building Equipped with 308 Advanced Damping System
F. C. Ponzo, A. Di Cesare, M. Simonetti, D. Nigro, T. Smith, S. Pampanin, D. Carradine
Population Model of Kolmogorov-Fisher Type with Nonlinear Cross-Diffusion 316
Mirsaid Aripov, Dildora Muhamediyeva
Compact Submanifolds in a Euclidean Space 321
Hanan Alohali, Haila Alodan
A Speeding Up Fractal Image Compression Using Fixed Size Partition and Hierarchical 326
Classification of Sub-images
Swalpa Kr. Roy, S. K. Bandyopadhyay, Abhishek Mahato, Tai-Hoon Kim
Comparison of Design Methods for Composite Slabs Using Small-scale Shear Tests 333
Josef Holomek, Miroslav Bajer, Jiři Kala
Computation of a Linear Relation of Signals: An Application on the Dynamics of United States 339
Dollar and Great Britain Pound Relative to Indonesian Rupiah
La Ode Saidi, Kartono, Rostin, Murdjani Kamaluddin, Edi Cahyono
Modelling Heterogeneity and Serial Correlation for Right Skewed Longitudinal Data Using Observation-driven Approach
Munir Mahmood, Taslim Mallick, Wasimul Bari, M. Tariqul Hasan
Application of Graph Theory on the Relationship of the Parameters Affecting the Dioxin Furan 357
Emission in Incineration Process
B. Sabariah, W.A.Awatif, M. Rashid, M. NormahUsing the SPSS Software to Assess the Health Status of Sibiu County's PopulationAmelia Bucur, Carmen Daniela Domnariu
A Hybrid Bees/Demon Optimization Algorithm for Solving the University Course Timetabling 371 Problem
Najlaa Alhuwaishel, Manar Hosny
Effects of Magnetic Field and Slip Condition on a Two-Fluid Model of Couple Stress Fluid flow 379 through a Narrow Channel
Nallapu Santhosh, G. Radhakrishnamacharya
A Numerical Implementation of a Predictor-Corrector Algorithm for Sufficient Linear387
Complementarity Problem
Benterki Djamel, Bouloudenine Nadjiba
A Statistical Approach Describing the Impact of Using Moodle at Higher Institutions 393Said Taan El Hajjar
On the Efficiency of Three Algorithms for Solving the Capacitated Max-K-Cut Problem 403
Safaa Alqallaf, Mohammed Almlla, Ludovit Niepel
Rasch-Andrich Thresholds in Engineering Students’ Attitudes towards Learning Mathematics 410Sholeh Ataei, Zamalia Mahmud
A New Local FDR Procedure Applied to Analysis of fMRI Data 418
Sung-Ho Kim, Namgil Lee
On Positive Definite Solution of the Nonlinear Matrix Equation $\mathrm{X}=\mathrm{A}^{*} \mathbf{X r} \mathbf{A}$ - I 427
Sana'a A. Zarea
A Novel Approach to Field Diagnosis for in-Service Transformer 433
Ambuj Kumar, Sunil Kumar Singh, Zakir Husain
On an Inverse Problem for the Heat Equation that Models the Detection of Defect in Metallic 438
Plate Whose Lower Part is Embedded
Said Mohamed Said
Variational Iteration Method for Hyperchaotic Nonlinear Fractional Differential Equations 445 Systems
Fethi Bin Muhammad Belgacem, Hasan Bulut, Haci Mehmet Baskonus
Swallowing of Casson Fluid in Oesophagus under the Influence of Peristaltic Waves of Varying 454
Amplitude
Sanjay Kumar Pandey, Shailendra Kumar Tiwari
Prediction of Distributed Material Based on Disk Measurements: An Application on Predicting 466
Sago Starch of a Tree Trunk
Yulius B. Pasolon, Nur Hayati, Fransiscus S. Rembon, La Rianda Baka, Edi Cahyono
An Analytical Calculation of Strong Shock Wave for Frozen Compressible Gas Flow Produced 470 By Plane Piston
Kamyar Mansour
An Improved Fuzzy Fractal Dimension for Texture Analysis 475
Nadia M. G. Al-Saidi, Mohamad Rushdan Md. Said, Wael J. Abdulaal
Mathematical Model of Cutaneous Leishmania, with Threshold Conditions for Infection 480
Persistance
Muhammad Zamir, Gul Zaman, Shoukat Fiaz
System Engineering of Sago Agro-industry Development Using a Regional Approach 488
La Rianda Baka, Tufaila Hemon, Yulius B. Pasolon, Alberth
Theoretical Computation of Lowest Electronic States of Three Alkaline-Earths Hydrides 494
Mahmoud Korek, Nayla El-Kork
Authors Index 499

Strong Approximation for an Overflow Queueing Network

Karima Adel-Aissanou
Research Unit LaMOS
Faculty of Exact Sciences,
Université de Bejaia
Bejaia 06000
Algeria
ak_adel@yahoo.fr

Karim Abbas
Research Unit LaMOS
Faculty of Exact Sciences, Université de Bejaia
Bejaia 06000
Algeria
karabbas2003@yahoo.fr

Djamil Aissani
Research Unit LaMOS
Faculty of Exact Sciences,
Université de Bejaia
Bejaia 06000
Algeria
lamos_bejaia@hotmail.co

Abstract: Queueing network models are among the most natural for quantitative analysis. However most models have no product form solutions for the steady state distribution. Besides, when we compute the solutions for infinite state space of this kind of models, the state-space has to be truncated, in some way, into a finite one. Many truncation techniques are used in the order to approximate the steady state distribution of the infinite state space of these models by that of the truncated one. In this paper, we show numerically comparing some obtained strong stability perturbation bounds that the augmentation of the first column provides the best truncation technique to approximate the steady state distribution of an overflow model.

Key-Words: Queueing, State-space truncation, Overflow model, Approximation, Algorithm

