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Abstract: Queueing network models are among the most natural for quantitative analysis. However most
models have no product form solutions for the steady state distribution. Besides, when we compute the
solutions for infinite state space of this kind of models, the state-space has to be truncated, in some
way, into a finite one. Many truncation techniques are used in the order to approximate the steady state
distribution of the infinite state space of these models by that of the truncated one. In this paper, we
show numerically comparing some obtained strong stability perturbation bounds that the augmentation
of the first column provides the best truncation technique to approximate the steady state distribution
of an overflow model.

Key–Words: Queueing, State-space truncation, Overflow model, Approximation, Algorithm

1 Introduction

Queueing network models are among the most
natural for quantitative analysis, capacity plan-
ning and buffer dimensioning of logistics, man-
ufacturing and communication systems. In or-
der to control and optimize a queueing network,
everyone has to know its characteristics like the
overall blocking or overflow probability, the aver-
age departure rate from the waiting room and the
servers and the average occupation proportion of
the waiting and service positions or others of spe-
cial interest. However, these characteristics can
only be calculated for a limited class of queueing
networks and the more involved the system dy-
namics get, the more involved the analysis of the
long run behavior usually becomes.

In this paper, we consider a general class of
so called overflow queueing networks. These net-
works consist of two queues, where the capacity of
the first queue is always finite. Customers arriv-
ing at the first queue have an overflow capability
from the first to the second queue if the first queue
operates at a certain fixed capacity, i.e., under
certain conditions, demands arriving at the first
queue are allowed to join the second queue. Due
to the natural occurrence of overflow queueing
problems, the related literature is vast, see for ex-
ample Disney and König [4] for a broad overview.
Overflow queueing models are widespread in lit-

erature. Van Doorn [24] and Parthasarathy and
Sudhesh [17] study the interoverflow time distri-
bution of a finite birth and death queue model.
Koury et al. [13] and Krieger et al. [14] give re-
views of iterative numerical methods for overflow
queueing models. A brief discussion of numeri-
cal methods for some two-queue overflow systems
and further references are given in Ching and Ng
[2]. While most of these formulations are of pri-
mary interest when the focus is on numerical re-
sults. Related overflow models are studied in van
Doorn [24] and Guérin, Lien [6] and the referenced
literature therein using a variety of different tech-
niques.

Despite of a growing literature on the per-
formance analysis of this type of models, there
is still no viable analytical method for predict-
ing performances of such networks. In this paper,
we propose to follow a different train of thought,
and will present a directly computable perturba-
tion bounds on the effect on the stationary behav-
ior for state-space truncation of infinite discrete
time Markov chain describing an overflow model.
These perturbation bounds are obtained by us-
ing the strong stability method [12] for different
truncation techniques. Indeed, we are interested
in approximating stationary distributions of an
infinite discrete time Markov chain describing the
state of an overflow model by those corresponding
of the same model after the truncation state-space
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of this Markov chain. More precisely, let P be
the one-step transition probability matrix of the
considering overflow model (with infinite waiting
room), and let (Q)P be the northwest corner of P .
Notice that (Q)P is not a stochastic matrix. The
procedure to make (Q)P stochastic by adding ap-
propriate values to its entries is called augmenta-
tion. In this paper, we are interested in determin-
ing which augmentation technique provides the
best approximation in the sense that the analytic
perturbation bounds derived by using the strong
stability method is the minimum. This is made by
numerical comparison of three different augmen-
tation techniques. Our main contributions here
are:

1. to approximate the stationary distributions
of an overflow model with infinite waiting
room, which has not a product form solution,
by those corresponding of the same model af-
ter the truncation of its number waiting room
by using the strong stability method, and

2. to show numerically comparing the obtained
strong stability bounds the best augmenta-
tion technique.

This paper comprises four sections. In Sec-
tion 2, we present basic definitions and tools
for computing the strong stability perturbation
bounds. In Section ??, we describe the overflow
network model in which the buffer size of second
service station is truncated and we give the per-
turbation bounds corresponding to this trunca-
tion. A comparison between the obtained per-
turbation bounds is illustrated through numerical
examples in Section 4. Eventually, we will point
out directions of further research.

2 Strong Stability Approach

The main tool for our analysis is the weighted
supremum norm, also called v-norm, denoted by
‖ · ‖v, where v is some vector with elements
v(k, l) > 1 for all (k, l) ∈ S = {0, 1} × {0, . . . , Q}.

Let us note B(N), the Borel field of the nat-
ural numbers that is equipped with the discrete
topology, and we consider the measurable space
(N,B(N)).

Let M = {µ(i,j)} be the space of finite mea-
sures on B(N) and η = {f(i, j)} be the space of
bounded measurable functions. We associate with

each transition operator P the linear mappings

(µP )(k,l) =
1∑
i=0

Q∑
j=0

µ(i,j) P(i,j);(k,l); (1)

(Pf) (k, l) =
1∑
i=0

Q∑
j=0

f(i, j) P(k,l);(i,j). (2)

Introduce to M the class of norms of the form

‖µ‖v =

1∑
i=0

Q∑
j=0

v(i, j)|µ(i,j)|, (3)

where v is an arbitrary measurable function (not
necessary finite) bounded from below by a posi-
tive constant. This norm induces in the space η
the norm

‖f‖v = sup
k

sup
l

|f(k, l)|
v(k, l)

; k, l ∈ {0, 1}×{0, . . . , Q}.

(4)
Let us consider B, the space of bounded linear
operators on the space {µ ∈M : ‖µ‖v <∞}, with
norm{
‖Q‖v = supk supl

1
v(k,l)

∑1
i=0

∑Q
j=0 v(i, j)|Q(k,l);(i,j)|;

k, l ∈ {0, 1} × {0, . . . , Q}.
(5)

Let ν and µ be two invariant measures and sup-
pose that these measures have finite v-norm.
Then{
|νf − µf | ≤ ‖ν − µ‖v ‖f‖v infk inf l v(k, l);
k, l ∈ {0, 1} × {0, . . . , Q}.

(6)
for all f with ‖f‖v finite.

For our analysis, we will assume that v(k, l)
is of a particular form v(k, l) = αk βl, for α > 1
and β > 1, which implies

inf
k

inf
l
v(k, l) = 1; k, l ∈ {0, 1} × {0, . . . , Q}. (7)

Hence, the bound 6 becomes{
|νf − µf | ≤ ‖ν − µ‖v supk supl

|f(k,l)
v(k,l) ;

k, l ∈ {0, 1} × {0, . . . , Q}.
(8)

We say that the Markov chain X with tran-
sition kernel P verifying ‖P‖v <∞ and invariant
measure π is strongly v-stable, if every stochastic

transition kernel P̃ in some neighborhood {P̃ :

‖P̃ −P‖v < ε} admits a unique invariant measure
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π̃ such that ‖π̃ − π‖v tends to zero as ‖P̃ − P‖v
tends to zero uniformly in this neighborhood. The
key criterion of strong stability of a Markov chain
X is the existence of a deficient version of P de-
fined in the following:

Let X be a Markov chain with the transition
kernel P and invariant measure π. We call a de-
ficient Markov kernel T a residual for P with re-
spect to ‖ · ‖v if there exists a probability measure
σ and a nonnegative measurable function h on S
satisfying the following conditions:

(a) πh > 0, σ1 = 1, σh > 0, and

(b) the kernel T = P − h ◦ σ is nonnegative,

(c) the v-norm of the kernel T is strictly less
than one, i.e., ‖T‖v < 1,

(d) ‖P‖v <∞,

where ◦ denotes the convolution between a mea-
sure and a function and 1 is the vector having all
the components equal to 1.

It has been shown in [1] that a Markov chain
X with the transition kernel P is strongly sta-
ble with respect to v if and only if a residual for
P with respect to v exists. Although the strong
stability approach originates from stability the-
ory of Markov chains, the techniques developed
for the strong stability approach allow to estab-
lish numerical algorithms for bounding ‖π̃ − π‖v.
A bound on ‖π̃− π‖v is established in the follow-
ing theorem.

Theorem 1. ([11]) Let P be strongly stable. If

‖P̃ − P‖v <
1− ‖T‖v
‖I −Π‖v

,

then, the following bound holds

‖π̃ − π‖v ≤ ‖π‖v
‖I −Π‖v ‖P̃ − P‖v

1− ‖T‖v − ‖I −Π‖v ‖P̃ − P‖v
,

where Π is the stationary projector of P and I is
the identity matrix.

Note that the term ‖I − Π‖v in the bound
provided in Theorem 1 can be bounded by

‖I −Π‖v ≤ 1 + ‖1‖v‖π‖v.

In this case, we can also bound ‖π‖v by

(σv) (πh)

1− ρ
. (9)

3 Analysis of the Model

3.1 Model description

Consider an overflow queueing network that con-
sists of two queues in parallel, Q1 and Q2, where
the first queueQ1 has not a waiting rooms, that is,
the capacity of the waiting room in first queue is
0, and the second queue Q2 has an infinite capac-
ity queue with First-Come, First-Served (FCFS)
service discipline. Customers arriving at the first
station have an overflow capability from the first
to the second queue if the first server is not avail-
able, i.e., under certain conditions, demands ar-
riving at the first service station are allowed to
join the second queue. In every model, the dy-
namic of the first queue is or is at least similar
to the famous Erlang loss systems. The services
in the both stations are assumed to be exponen-
tial with parameters µ1 and µ2, respectively. The
customers arrive according to a Poisson process
with parameter λ. We assume that λ < µ2.

This model has no product form solution for
the steady-state joint queue size distribution [9].
Furthermore, the same model can be represented
as quasi birth and death processes, see for ex-
ample Latouche and Ramaswami [15]. Conse-
quently, their analysis can be carried out using a
matrix-geometric approach, see Neuts [16]. Over-
flow queueing models are widespread in literature.
Van Doorn [24] and Parthasarathy and Sudhesh
[17] study the interoverflow time distribution of
a finite birth and death queue model. Koury et
al. [13] and Krieger et al. [14] give reviews of it-
erative numerical methods for overflow queueing
models. A brief discussion of numerical methods
for some two-queue overflow systems and further
references are given in Ching and Ng [2]. van
Doorn [24] and Guérin, Lien [6] and the refer-
enced literature therein using a variety of different
techniques. The overflow stream is known to be
hyperexponential [24], so that the overflow station
separately can be analyzed as a GI/M/s queueing
system. This, however, would still require com-
plex computational procedures for large s values
[3]. Moreover, we can be interested in a perfor-
mance measure that depends on both queue sizes,
such as the total number of customers present,
where µ1 6= µ2 is allowed. van Dijk [22] es-
tablishes an explicit error bounds on state-space
truncation of an overflow model. While most of
these formulations are of primary interest when
the focus is on numerical results, the strong sta-
bility method [12] used in the following gives a
new perturbation bounds with exactly comput-
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ing of the constants. This approach gives with
precision the error, on the queue size stationary
distribution of the considered overflow model, due
to the state-space truncation.

Let (i, j) denote the number of customers at
Q1 and Q2, respectively. M = (λ + µ1 + µ2).
Consider the discrete time Markov chain with
one-step transition probabilities (P(i,j);(m,n)) for
a transition from a state (i, j) to a state (m,n)
given by: 

P̃(0,j);(1,j) = λ/M ;

P̃(1,j);(,j+1) = λ/M ;

P̃(1,j);(0,j) = µ1/M ;

P̃(i,j);(i,j−1) = µ2/M ;

P̃(0,j);(0,j) = µ1/M ;

P̃(i,0);(i,0) = µ2/M ;

(10)

In the following we use the strong stability
method to approximate the stationary distribu-
tions of an overflow model with infinite waiting
room by those corresponding of the same model
after the truncation of its number waiting room.
This is given by considering three different types
of truncation technique, and we are interested in
determining which type of truncation technique
provides the best approximation in the sense that
the strong stability bound value is the minimum.

3.2 State-Space Truncation in the
Overflow Model

In this section, for approximating the station-
ary distribution of an infinite Markov chain, we
will establish three perturbation bounds by us-
ing the strong stability method. For that, let P
be the transition probability matrix of an infi-
nite discrete time Markov chain, describing the
overflow model considered in our analysis, which
has a unique stationary distribution π, and let

(Q)P be the northwest corner of P . Notice that

(Q)P is not a stochastic matrix. The procedure
to render (Q)P stochastic by adding appropriate
values to its components is called augmentation.
Seneta [20] summarizes much of the literature on
this. In our analysis, we will consider three dif-
ferent types of truncation technique: augmenta-
tion of the first column, normalization of rows

and uniform augmentation. In fact, from the ma-
trix (Q)P we construct a new stochastic matrix
M = (M(i,j);(m,n))0≤i,j,m,n≤Q. The principle of
these procedure is given as follow:

1. Linear augmentation: The lost probability
mass during the truncation of the matrix P
is redistributed on the columns of the matrix

(Q)P . More precisely, let

(Q)A = ((Q)A(i,j);(m,n))0≤i,j,m,n≤Q

be a some stochastic matrix, for

0 ≤ i, j,m, n ≤ Q

we set:

(Q)P(i,j);(m,n) = P(i,j);(m,n) +(Q) A(i,j);(m,n) ×∑
k>Q

∑
l>Q

P(i,k);(m,l) for 0 ≤ i, j,m, n ≤ Q.

Particularly, we obtain:

i. The augmentation of the first col-
umn: if we choose (Q)A(i,1);(m,1) = 1 for
0 ≤ i,m ≤ Q;

ii. The uniform augmentation: if we
choose (Q)A(i,j);(m,n) = (Q+1)−1 for 0 ≤
i, j,m, n ≤ Q.

2. Normalization: We set S(i,Q);(m,n) =
Q∑
j=0

N∑
n=0

P(i,j);(m,n), then we choose for 0 ≤

i, j,m, n ≤ Q:

(Q)P(i,j);(m,n) =
P(i,j);(m,n)

S(i,Q);(m,n)
,

where we assign a large value to Q in order
that S(i,Q);(m,n) > O.

3.2.1 Augmentation of the First Column

In this case, we propose the following truncation:{
P1(1,Q);(1,0) = λ

M ;

P1(i,j);(m,n) = P̃(i,j);(m,n) otherwise.
(11)

In order to establish strong stability bounds,
we require bounds on the basic input entities
such as π (stationary distribution of the trun-
cated model) and T (taboo matrix corresponding
to some taboo state of the matrix P ) and, we have
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to specify the test function v that defines the v-
norm. Specifically, for α > 1 and β > 1, we will
choose

υ(k, l) = αkβl. (12)

For our analysis, we introduce the following con-
dition:

1 <
µ

λ
(13)

where µ = min(µ1, µ2). This condition cor-
responds to the trafic intensity condition of the
infinite model.

Essential for our numerical bounds on the de-
viation between stationary distributions π (sta-
tionary distribution of the truncated model) and
π (stationary distribution of the infinite model) is
a bound on the deviation of the transition matrix
P from P . This bound is provided in the following
lemma.

Lemma 2. If condition (13) is satisfied, then

‖P1− P̃‖ ≤ λ

βQ M
= 41(β) (14)

Proof. By definition, we have

‖P1− P̃‖υ =

sup
k=0,1

sup
0<l<Q

1

υ(k, l)

1∑
i=0

Q∑
j=0

υ(i, j)|P1(k,l);(i,j) − P̃(k,l);(i,j)|;

= sup
0≤i≤Q

sup
0≤j≤N

S(i, j),

where
S(i, j) =

1

υ(i, j)

Q∑
m=0

N∑
n=0

υ(m,n)|P̃(i,j);(m,n) − P1(i,j);(m,n)|.

(15)

• For i = 0

S(i, j) = 0. (16)

• For i = 1

If 0 ≤ j < Q

S(i, j) = 0. (17)

If j = Q

S(i, j) =
1

α1βQ

(
αβ0

λ

M
+ 0 + 0+

)
.

=
1

βQ
λ

M
. (18)

From (16), (17) and (18) we have

‖P1− P̃‖v =
1

βQ
λ

M
.

Let T1 denote the taboo Markov kernel
for taboo state (0, 0); more specifically, for
(i, j), (m,n) let:

T1(i,j)→(m,n) =

{
0 if i = j = 0,

P1(i,j);(m,n) otherwise.
(19)

In the following lemma we will identify the
range for α and β that leads to verify the condi-
tions (a) – (d). Indeed, the main work in strong
stability method is finding α and β such that
‖T1‖v < 1 where T is defined above in (19).

Lemma 3. Provided that condition (13)
holds,and for 1 < β < µ

M and β < α <

1 +
(

1− 1
β

)
µ
M we have

‖T1‖υ = max

{
α
λ

M
+
µ1
M

+
1

β

µ2
M
,α

λ

M

+
µ2
M

+
1

β

µ1
M

}
,

= ρ1(α, β) < 1. (20)

Where µ = min(µ1, µ2).

Proof. We have

T1υ(i, j) =
1∑

m=0

Q∑
n=0

v(m,n)T1(i,j)→(m,n).

For i = 0

If j = 0
T1υ(0, 0) = 0 (21)

If 0 < j ≤ Q

T1υ(0, j) = αβj
λ

M
+ α0βj(1− λ

M
− µ2
M

)

+α0βj−1
µ2
M
.

= βj
(
α
λ

M
+
µ1
M

+
1

β

µ2
M

)
.(22)
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From (21) and (22) we have

ρ1(i=0,0≤j≤Q) = α
λ

M
+
µ1
M

+
1

β

µ2
M
. (23)

For i = 1

If j = 0

T1υ(1, 0) = αβ
λ

M
+ α0β0

µ1
M

+α1β0(1− λ

M
− µ1
M

),

= α

(
β
λ

M
+

1

α

µ1
M

+
µ2
M

)
,

≤ α

(
α
λ

M
+

1

β

µ1
M

+
µ2
M

)
.(24)

If 0 < j < Q

T1υ(1, j) = αβj+1 λ

M
+ α0βj

µ1
M

+αβj−1
µ2
M
,

= αβj
(
β
λ

M
+

1

β

µ1
M

+
1

β

µ2
M

)
,

≤ αβj
(
α
λ

M
+

1

β

µ1
M

+
µ2
M

)
.(25)

If j = Q

T1υ(1, Q) = αβ0
λ

M
+ α0βQ

µ1
M

+α1βQ−1(
µ2
M

),

= αβQ
(

1

βQ
λ

M

+
1

α

µ1
M

+
1

β

µ2
M

)
.(26)

From (24), (25) and (26) we have

ρ1(i=1,0≤j≤Q) = α
λ

M
+

1

β

µ1
M

+
µ2
M
. (27)

From (23) and (27) we have

ρ1(α, β) = max

{
α
λ

M
+
µ1
M

+
1

β

µ2
M

,α
λ

M
+
µ2
M

+
1

β

µ1
M

}
. (28)

ρ1(α, β) < 1 when 1 < β < µ
λ and β < α <

1 +
(

1− 1
β

)
, then we obtain

T1υ(i, j) ≤ ρ1(α, β)υ(i, j) (29)

for all 0 ≤ i ≤ 1, 0 ≤ j ≤ Q .
And it follows that the v-norm of T1 is equal

to ρ1(α, β) which proves the claim.

In the following lemma we will identify the
range for α and β that leads to finite v-norm of
P1. For that, we choose the measurable function

h1(i, j) = 1{i=0,j=0} =

{
1 for i = j = 0

0 otherwise
(30)

and the probability measure

σ1(i,j) = P(0,0)→(i,j). (31)

Lemma 4. Provided that (13) holds, the v-norm
of π1 is bounded by

‖π1‖υ =
π1(0,0)

1− ρ1(α, β)

(
1 + (α− 1)

λ

M

)
(32)

= C0(α, β) <∞, (33)

Where ρ1(α, β) was defined in (28)

Proof. According to equation (9), we have

‖π1‖υ ≤
(σ1υ)(πh)

1− ρ1
.

By definition

σ1υ =

1∑
i=0

Q∑
j=0

σ1(i,j)υ(i, j) = 1+(α−1)
λ

M
. (34)

and

π1h1 =
1∑
i=0

Q∑
j=0

π1(i, j)h1(i, j) = π1(0, 0) > 0.

(35)
Hence

‖π1‖υ =
π1(0,0)

1− ρ1(β)

(
1 + (α− 1)

λ

M

)
= C0(α, β).

Let β0 = sup{β : ρ1(α, β) < 1} and α0 =
sup{α : ρ1(α, β) < 1}

Theorem 5. For all β such that 1 < β < β0 the
discrete time Markov chain describing the over-
flow queue with finite buffers is v-strongly stable
for the test function υ(k, l) = αkβl.
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Proof. We have π1h1 = π1(0, 0), σ11 = 1, and

σ1h1 = σ1(0,0) = 1− λ

M
> 0.

T1(i,j)→(m,n) =

{
0 if i = j = 0,

P1(i,j);(m,n) otherwise.

Hence, the Kernel T1 is non negative.

We verify that ‖P1‖υ <∞. We have
T1 = P1− h1 ◦ σ1 then P1 = T1 + h1 ◦ σ1.

‖P1‖υ ≤ ‖T1‖υ + ‖h1‖υ · ‖σ1‖υ.

Or, according to equation (29)

‖T1‖υ ≤ ρ1(α, β) < 1. (36)

According to equations (4) and (3), we have

‖h1‖υ =
1

sup
i=0

Q
sup
j=0

|h1(i, j)|
υ(i, j)

= 1,

and

‖σ1‖υ =
1∑
i=0

Q∑
j=0

υ(i, j)|σ1(i,j)|,

= 1 + (α− 1)
λ

M
,

≤ 1 + (α0 − 1)
λ

M
<∞.

where α0 = sup{α : ρ1(α, β) < 1}.
Then

‖P1‖υ <∞.

By Theorem 5, the general bound provided

Theorem 1 can be applied to the kernels P̃ and
P1 for our overflow model. Specifically, we will in-
sert the individual bounds provided in Lemma 2,
Lemma 3 and Lemma 4, which yields the follow-
ing result.

Theorem 6. Let P̃ and P1 be the steady state
joint queue size distributions of discrete time
Markov chains in the overflow model with finite
capacity and the overflow model with infinite ca-
pacity respectively.
For all 1 < β < β0 and α0 = sup{α : ρ1(α, β) <
1}, and under the condition

41(α, β) <
1− ρ1(α, β)

C01(α, β)
,

We have the following result:

‖π1− π̃‖υ ≤ C01(α, β)C1(α, β)41(α, β)

1− ρ1(α, β)− C1(α, β)41(α, β)
,

= SSB1(α, β). (37)

Where C1(α, β) = 1 + C01(α, β).

Proof. Note that if β ∈]1, β0[ and α ∈]β, α0[ al-
ready implies C01(α, β) < ∞ and ρ1(α, β) < 1.
Hence lemma 2 and lemma 4 apply.

3.2.2 Normalization of Rows

in this method, We set

R(i, Q) =

Q∑
j=1

P (i, j),

we choose for 1 ≤ i, j ≤ Q:

PQ =
P (i, j)

R(i, Q)
.

So, we propose the following truncation
P2(1,Q)→(1,Q−1) = µ2

µ1+µ2
;

P2(1,Q)→(0,Q) = µ1
µ1+µ2

;

P2(i,j)→(m,n) = P̃(i,j)→(m,n) otherwise.

(38)

In the following we establish the bounds for
the normalization of rows’ truncation technique.
For this end, it’s sufficient to proceed by following
the same sketch of proof used in the first case of
the truncation.

For our bounds, we require bounds on the ba-
sic input entities such as π2 and T2.
In order to establish bounds, we have to specify υ.
Specifically, for β > 1 and α > 1, we will choose

υ(k, l) = αkβl. (39)

as our norm-defining mapping.
We introduce the following condition:

1 <
µ

λ
(40)

Where µ = min(µ1, µ2), essential for our nu-
merical bound on the deviation between station-
ary distribution π2 and π̃ and a bound on the de-

viation of the transition kernel P̃ from P2. This
bound is provided in the following lemma.
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Lemma 7. If condition (40) is satisfied, then

‖P2− P̃‖ ≤ 1

β

(
µ2

µ1 + µ2
− µ2
M

)
+

1

α

(
µ1

µ1 + µ2
− µ1
M

)
,

= 42(α, β). (41)

Proof. By definition, we have

‖P2− P̃‖v = sup
k=0,1

sup
0<l<Q

1

υ(k, l)
×

1∑
i=0

Q∑
j=0

v(i, j)|P2(k,l);(i,j) − P̃(k,l);(i,j)|,

= sup
0≤i≤Q

sup
0≤j≤N

S′(i, j),

where

S′(i, j) =
1

υ(i, j)
×

Q∑
m=0

N∑
n=0

υ(m,n)|P̃(i,j);(m,n) − P2(i,j);(m,n)|. (42)

For i = 0
S′(i, j) = 0, (43)

For i = 1

if 0 ≤ j < Q

S′(i, j) = 0, (44)

if j = Q

S′(i, j) =
1

α1βQ

(
α1βQ−1

∣∣∣∣µ2M − µ2
µ1 + µ2

∣∣∣∣
+α0βQ

∣∣∣∣µ1M − µ1
µ1 + µ2

∣∣∣∣) ,
≤ 1

β

(
µ2

µ1 + µ2
− µ2
M

)
+

1

α

(
µ1

µ1 + µ2
− µ1
M

)
. (45)

From (43), (44) and (45), we have

‖P2− P̃‖ ≤ 1

β

(
µ2

µ1 + µ2
− µ2
M

)
+

1

α

(
µ1

µ1 + µ2
− µ1
M

)
,

≤ 42(α, β).

Let T2 denote the taboo Markov kernel for
taboo state (0, 0); more, for (i, j), (m,n), we have

T2(i,j);(m,n) =

{
0 if i = j = 0,

P(i,j);(m,n) otherwise.
(46)

Lemma 8. Provided that (40) holds, we have

‖T2‖υ = max

{
α
λ

M
+

1

β

µ2
M

+
µ1
M
,

1

β

(
µ2

µ1 + µ2
− µ2
M

)
+

1

α

(
µ1

µ1 + µ2
− µ1
M

)}
,

= ρ2(α, β) < 1. (47)

Proof. We have

T2υ(i, j) =

1∑
m=0

Q∑
n=0

υ(m,n)T2(i,j);(m,n).

For i = 0

If j = 0
T2υ(0, 0) = 0 (48)

If 0 < j ≤ Q

T2υ(0, j) = α1βj
λ

M
+ α0βj−1

µ2
M

+α0βj
µ1
M
,

= βj
(
α
λ

M
+

1

β

µ2
M

+
µ1
M

)
= βjρ1. (49)

For i = 1

If j = 0

T2υ(1, 0) = α1β1
λ

M
+ α0β0

µ1
M

+α1β0
µ2
M
,

= α

(
β
λ

M
+

1

α

µ1
M

+
µ2
M

)
= αρ2. (50)

If 0 < j < Q

T2υ(1, j) = α1βj
λ

M
+ α0βj

µ1
M

+α1βj−1
µ2
M
,

= αβj
(
β
λ

M
+

1

α

µ1
M

+
µ2
M

)
= αβjρ3. (51)
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If j = Q

T2υ(1, Q) = α1βQ−1
(

µ2
µ1 + µ2

)
+α0βQ

(
µ1

µ1 + µ2

)
,

= α1βQ
{

1

β

(
µ2

µ1 + µ2
− µ2
M

)
+

1

α

(
µ1

µ1 + µ2
− µ1
M

)}
= α1βQρ5. (52)

From (48), (49), (50) and (51), we obtain

T2v(i, j) ≤ ρ2(α, β)υ(i, j)

where

ρ2(α, β) = max(ρ1, ρ2, ρ3, ρ4).

If β > 1 and β < α < 1 + (1 − 1
β )µλ with µ =

min(µ1, µ2), then ρ2(α, β) < 1
And the υ-norm of T2 is equal to ρ2(α, β) which
proves the claim.

To proof the v-stabiliry of the Markov chain
P , we choose the measurable function

h2(i, j) = 1{i=0,j=0} =

{
1 for i = j = 0

0 otherwise
(53)

and the measure

σ2(i,j) = P(0,0)→(i,j). (54)

Lemma 9. Provided that (40) holds, the υ-norm
of π2 is bounded by

‖π2‖υ =
π2(0,0)

1− ρ2(α, β)

(
α
λ

M
+
µ1
M

+
µ2
M

)
,(55)

= C02(α, β) <∞. (56)

Proof. We have [1]

‖π2‖υ ≤
(σ2υ)(π2h)

1− ρ2(α, β)
.

By definition

σ2υ =
1∑
i=0

Q∑
j=0

σ2(i,j)h2(i, j),

= α
λ

M
+
µ1
M

+
µ2
M
. (57)

and

π2h2 =

1∑
i=0

Q∑
j=0

π(i, j)h(i, j) = π(0, 0) > 0. (58)

Hence

‖π2‖υ =
π(0,0)

1− ρ2(α, β)

(
α
λ

M
+
µ1
M

+
µ2
M

)
(59)

= C02(α, β). (60)

Let

β0 = sup{β : ρ2(α, β) < 1},

and
α0 = sup{α : ρ2(α, β) < 1}.

Theorem 10. For all α and β such that 1 < β <
β0, β < α < α0 the discrete time Markov chain
describing the overflow queue with finite buffers
is υ-strongly stable for the test function υ(k, l) =
αkβl.

Proof. We have π2h2 = π2(0, 0), σ21 = 1, and

σ2h2 = σ2(0,0) = 1− λ

M
> 0.

T2(i,j);(m,n) =

{
0 if i = j = 0,

P2(i,j);(m,n) otherwise.

Hence, the Kernel T2 is non negative.
We verify that ‖P2‖υ <∞. We have
T2 = P2− h2 ◦ σ2 then P = T2 + h2 ◦ σ2.

‖P2‖υ ≤ ‖T2‖υ + ‖h2‖υ · ‖σ2‖υ.
Or, according to equation (47)

‖T2‖υ ≤ ρ2(α, β) < 1. (61)

According to equations (4) and (3), we have

‖h2‖υ =
1

sup
i=0

Q
sup
j=0

|h2(i, j)|
υ(i, j)

= 1,

and

‖σ2‖υ =
1∑
i=0

Q∑
j=0

υ(i, j)|σ2(i,j)|,

= 1 + (α− 1)
λ

M
,

≤ 1 + (α0 − 1)
λ

M
<∞.

where α0 = sup{α : ρ2(α, β) < 1}.
Then

‖P2‖υ <∞.
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By this theorem, the general bound provided

by Kartachov [1] can be used to the Kernel P̃ and
P2 for our overflow model.

Theorem 11. Let P̃ and P2 be the steady state
joint queue size distributions of discrete time
Markov chains in the overflow model with finite
capacity and the overflow model with infinite ca-
pacity respectively.
For all 1 < β < β0 and α0 = sup{α : ρ2(α, β) <
1}, and under the condition

42(α, β) <
1− ρ2(α, β)

C02(α, β)
,

We have the following result:

‖π2− π̃‖υ ≤ C02(α, β)C2(α, β)42(α, β)

1− ρ2(α, β)− C2(α, β)42(α, β)

= SSB2(α, β). (62)

Where C2α, β) = 1 + C02(α, β).

Proof. Note that if β ∈]1, β0[ and α ∈]β, α0[ al-
ready implies C02(α, β) < ∞ and ρ2(α, β) < 1.
Hence lemma 7 and lemma 9 apply.

3.2.3 Uniform Augmentation

Let

θ((i,j),Q) =
1∑

m=0

∞∑
n=Q+1

P(i,j);(m,n)

For i = 0
θ((0,j),Q) = 0

For i = 1

If j < Q
θ((1,j),Q) = 0

If j = Q

θ((1,Q),Q) =
∞∑

n=Q+1

P(1,Q);(0,n) +
∞∑

n=Q+1

P(1,Q);(1,n)

=
λ

M

We propose the following truncation

P3(1,Q);(1,Q−1) = µ2
M + 1

2(Q+1)
λ
M ;

P3(1,Q);(0,Q) = µ1
M + 1

2(Q+1)
λ
M ;

P3(1,Q);(i,j) = 1
2(Q+1)

λ
M ;

P3(i,j);(m,n) = P̃(i,j);(m,n) otherwise.

(63)

For our bounds, we require bounds on the ba-
sic input entities such as π3 and T3.
In order to establish bounds, we have to specify υ.
Specifically, for β > 1 and α > 1, we will choose

υ(k, l) = αkβl. (64)

as our norm-defining mapping.
We introduce the following condition:

1 <
µ

λ
(65)

Where µ = min(µ1, µ2), essential for our nu-
merical bound on the deviation between station-
ary distribution π3 and π̃ and a bound on the de-

viation of the transition kernel P̃ from P3. This
bound is provided in the following lemma.

Lemma 12. If condition (65) is satisfied, then

‖P3− P̃‖ ≤ 1

(β − 1)

1

(Q+ 1)

λ

M

= 43(α, β). (66)

Proof. By definition, we have

‖P3− P̃‖υ = sup
k=0,1

sup
0<l<Q

1

υ(k, l)
×

1∑
i=0

Q∑
j=0

v(i, j)
∣∣∣P3(k,l);(i,j) − P̃(k,l);(i,j)

∣∣∣ ,
= sup

0≤i≤Q
sup

0≤j≤N
S”(i, j),

where

S”(i, j) =

1

υ(i, j)

Q∑
m=0

N∑
n=0

υ(m,n)
∣∣∣P̃(i,j);(m,n) − P3(i,j);(m,n)

∣∣∣ .(67)

For i = 0

S”(i, j) = 0, (68)

For i = 1

if 0 ≤ j < Q

S”(i, j) = 0, (69)

Advances in Mathematics and Statistical Sciences

ISBN: 978-1-61804-275-0 205



if j = Q

S”(i, j) =
1

αβQ

{
αβQ−1

1

2(Q+ 1)

λ

M

+α0βQ
1

2(Q+ 1)

λ

M

+

Q−1∑
j=0

α0βj
1

2(Q+ 1)

λ

M

+

Q∑
j=0,j 6=Q−1

α1βj
1

2(Q+ 1)

λ

M

 ,

≤
(

1 +
1

α

)
1

2(Q+ 1)

λ

M

(
1 +

1

β − 1

)
.(70)

From (68), (69) and (70), we have

‖P3− P̃‖ ≤
(

1 +
1

α

)
1

2(Q+ 1)

λ

M

(
1 +

1

β − 1

)
= 43(α, β).

Let T3 denote the taboo Markov kernel for
taboo state (0, 0); more, for (i, j), (m,n), we have

T3(i,j);(m,n) =

{
0 if i = j = 0,

P3(i,j);(m,n) otherwise.
(71)

Lemma 13. Provided that (65) holds, we have

‖T3‖υ = ρ3(α, β) < 1. (72)

Proof. We have

T3υ(i, j) =
1∑

m=0

Q∑
n=0

υ(m,n)T2(i,j);(m,n).

For i = 0

If j = 0
T3υ(0, 0) = 0 (73)

If 0 < j ≤ Q

T3υ(0, j) = α1βj
λ

M
+ α0βj−1

µ2
M

+ α0βj
µ1
M
,

= βj
(
α
λ

M
+

1

β

µ2
M

+
µ1
M

)
= βjρ1. (74)

For i = 1

If j = 0

T3υ(1, 0) = α1β1
λ

M
+ α0β0

µ1
M

+α1β0
µ2
M
,

= α

(
β
λ

M
+

1

α

µ1
M

+
µ2
M

)
= αρ2. (75)

If 0 < j < Q

T3υ(1, j) = α1βj
λ

M
+ α0βj

µ1
M

+α1βj−1
µ2
M
,

= αβj
(
β
λ

M
+

1

α

µ1
M

+
µ2
M

)
= αβjρ3. (76)

If j = Q

T3υ(1, Q) = αβQ−1
(
µ2
M

+
1

2(Q+ 1)

λ

M

)
+α0βQ

(
µ1
M

+
1

2(Q+ 1)

λ

M

)
+

Q−1∑
j=0

α0βj
1

2(Q+ 1)

λ

M

+

Q∑
j=0,j 6=Q−1

α1βj
1

2(Q+ 1)

λ

M
,

≤ α1βQ
{

1

β

µ2
M

+
1

α

µ1
M

+

(
1

α
+ 1

)
×(

1 +
1

(β − 1)

)
1

2(Q+ 1)

λ

M

}
,

≤ α1βQ
{

1

β

µ2
M

+
1

α

µ1
M

+

(
1

α
+ 1

)
×(

1 +
1

(β − 1)

)
1

4

λ

M

}
,

≤ α1βQρ5. (77)

If α > β then

ρ3(α, β) = max(ρ1, ρ5).

It is easy to proof that for 1 < β < µ
λ and β <

α < 1 +
(

1− 1
β

)
µ
λ

we have
ρ3(α, β) < 1
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To proof the υ-stabiliry of the Markov chain
P3, we choose the measurable function

h3(i, j) = 1{i=0,j=0} =

{
1 for i = j = 0

0 otherwise
(78)

and the measure

σ3(i,j) = P3(0,0)→(i,j). (79)

Lemma 14. Provided that (65) holds, and for

1 < β < µ
λ and β < α < 1 +

(
1− 1

β

)
µ
λ the υ-

norm of π3 is bounded by

‖π3‖υ =
π3(0,0)

1− ρ3(α, β)

(
α
λ

M
+
µ1
M

+
µ2
M

)
,

= C03(α, β). (80)

Proof. We have [1]

‖π3‖υ ≤
(σ3υ)(π3h)

1− ρ3(α, β)
.

By definition

σ3υ =

1∑
i=0

Q∑
j=0

σ3(i,j)h3(i, j),

=
λ

M
αβ0 +

(µ1
M

+
µ2
M

)
α0β0,

= α
λ

M
+
µ1
M

+
µ2
M
. (81)

and

π3h =
1∑
i=0

Q∑
j=0

π3(i, j)h(i, j) = π3(0, 0) > 0.

(82)
Hence

‖π‖υ =
π3(0,0)

1− ρ3(α, β)

(
α
λ

M
+
µ1
M

+
µ2
M

)
= C03(α, β).

Let

β0 = sup{β : ρ3(α, β) < 1},

and
α0 = sup{α : ρ3(α, β) < 1}.

Theorem 15. For all α and β such that 1 < β <
β0, β < α < α0 the discrete time Markov chain
describing the overflow queue with finite buffers
is υ-strongly stable for the test function v(k, l) =
αkβl.

Proof. We have π3h3 = π3(0, 0), σ31 = 1, and

σ3h3 = σ3(0,0) = 1− λ

M
> 0.

T3(i,j);(m,n) =

{
0 if i = j = 0,

P3(i,j);(m,n) otherwise.

Hence, the Kernel T3 is non negative.
We verify that ‖P3‖υ <∞. We have
T3 = P3− h3 ◦ σ3 then P3 = T3 + h3 ◦ σ3.

‖P3‖υ ≤ ‖T3‖υ + ‖h3‖υ · ‖σ3‖υ.
Or, according to equation (72)

‖T3‖υ ≤ ρ3(α, β) < 1. (83)

According to equations (4) and (3), we have

‖h3‖υ =
1

sup
i=0

Q
sup
j=0

|h3(i, j)|
υ(i, j)

= 1,

and

‖σ3‖υ =
1∑
i=0

Q∑
j=0

υ(i, j)|σ3(i,j)|,

= 1 + (α− 1)
λ

M
,

≤ 1 + (α0 − 1)
λ

M
<∞.

where α0 = sup{α : ρ3(α, β) < 1}.
Then

‖P3‖υ <∞.

By this theorem, the general bound provided

by Kartachov [1] can be used to the Kernel P̃ and
P3 for our overflow model.

Theorem 16. Let P̃ and P3 be the steady state
joint queue size distributions of discrete time
Markov chains in the overflow model with finite
capacity and the overflow model with infinite ca-
pacity respectively.
For all 1 < β < β0 and α0 = sup{α : ρ3(α, β) <
1}, and under the condition

43(α, β) <
1− ρ3(α, β)

C03(α, β)
,

We have the following result:

‖π3− π̃‖υ ≤ C03(α, β)C3(α, β)43(α, β)

1− ρ3(α, β)− C3(α, β)43(α, β)
,

= SSB3(α, β). (84)

Where C3(α, β) = 1 + C03(α, β).
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Proof. Note that if β ∈]1, β0[ and α ∈]β, α0[ al-
ready implies C03(α, β) < ∞ and ρ(α, β) < 1.
Hence lemma 5.1 and lemma 5.3 apply.

4 Numerical Examples

In this section we will apply our bounds put for-
ward in Theorem 6, Theorem 11 and Theorem 16.
Below we give the numerical results of the com-
puting of the three bounds SSB1, SSB2 and
SSB3, where we set λ = 0.1, µ1 = 2.5, µ2 = 2,
α = 6.8 and β = 6.7. Table 1 (see also the fig-
ure) shows the numerical values of the three com-
puted bounds for the used techniques of trunca-
tion, which are:

SSB1: Augmentation of the first column;

SSB2: Normalization of rows;

SSB3: Uniform Augmentation.

Q SSB1 SSB2 SSB3

1 0.344803530673826 0.341674708676110 0.197024072883162

2 0.043597387957457 0.341641102156400 0.129427358770771

3 0.004641753432986 0.341640279388323 0.096367343570474

4 4.288049412137165e− 004 0.341640260200825 0.076760384611717

5 3.581751061599958e− 005 0.341640259761924 0.063783050422334

6 2.781737851868289e− 006 0.341640259751964 0.054559125816011

7 2.045226117079339e− 007 0.341640259751739 0.047665958926824

8 1.441282369176394e− 008 0.341640259751734 0.042319219279720

9 9.813867379097345e− 010 0.341640259751734 0.038050999520226

10 6.500052949288499e− 011 0.341640259751734 0.034564866103792

Table 1: Numerical results of the used trun-
cation techniques

Figure 1: Les deux bornes obtenues par
l’augmentation uniforme
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From these numerical results, it is easy to see
that, the values of our bounds SSB1, SSB2 and
SSB3 decrease as the value of level truncation
Q increases and, for the fixed parameters of our
model, the technique of the augmentation of the
first column provides the best approximation to π
while that of the normalization of rows provides
the worst.

5 Further Research

Analytical solutions for multi-server queues have
been obtained for a few special cases and, many
approximation techniques of truncation have been
developed on the performance analysis of this
kind of queueing models. The error bound re-
sults are essentially based on the strong stabil-
ity approach. This approach is also applicable to
other performance measures and to more general
queueing networks such that retrial multi-server
queues. Further research in this direction is thus
recommended.
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